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CHAPTER I: INTRODUCF[ON

I.I Preliminary Remarks

Metal fatigue under stress and thermal cycling is expected

to be a principal mode of failure in such engine components as turbine

blades and disks, and combustor liners. But fatigue design factors are

subject to considerable uncertainty. For example, enormous scatter is

observed in cycles to failure fatigue test data with coefficients of

variation (standard deviation/mean) ranging typically from 20 to 70%.

Furthermore, scatter exists in operating enviornment data, and uncertain-

ties are present in the models used to predict stresses. Therefore life

predictions, which rely on the fatigue models and the data for such

models, are also subject to unde_tainty. It is suggested that the

appropriate mathematical model to describe fatigue design factors is a

probabilistic one rather than a deterministic one. Uncertainty in en-

vironmentc and in fatigue resistance imply uncertainty in fatigue life

predictions. This uncertainty can be analyzed rationally only using

probability theory.

A reliability approach to high temperature fatigue using

probabilistic design theory has at least the promise if not the guaran-

tee of producing better engineered design, i.e., components which are

more safe, reliable, and cost effective, relative to a deterministic

approach. Typically conventional design procedures tend to be

conservative and produce inconsistent levels of risk in components of a
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system. The payoff for an improved design criteria, e.g., for engine

components, would be a savings in weight.

1.2 General Comments on Mechanical Reliability

The various uncertainties which exist in a mechanical de-

sign problem can be divided into statistical and nonstatistical (or

professional) uncertainties as follows

I. Statistical Uncertainty (Data generally available or easy to
obtain)

a. In basic material behavior, e.g., the scatter observed

in basic S-N fatigue data.

b. In the estimates of the design parameters from data,

e.g., the estimate of the fatigue strength coefficient is a

random variable having a significantly large variance when only

a small sample of fatigue data is available.

c. In the mechanical environment (load, high temperature,

corrosion, etc. which affect fatigue lift)

o Nonstatistical Uncertainty

(associated with assumptions made in the analysis)

a. In the theoretical model used to describe fatigue

strength, e.g., linear damage accumulation rules.

b. Introduced by the procedure used to compute nominal

stresses and temperatures in a component, i.e., assumptions

made in the computer analysis routines.

c. Introduced by the models used to calculate fatigue

strains at the critical points.
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d. In strength due to size effects, processing and machin-

ing operations, assembly operations, etc.

The above illustrations suggest that we are dealing with a

highly unpredictable physical phene_ena. Some questions immediately

come to mind.

I. Do present analysis procedures provide results which are too

conservative? Are components overdesigned?

2. Are analyses telling us to provide too little material, or to

recommend improper details to insure adequate protection for fatigue?

3. In general, are the procedures which are currently being used

really producing high quality designs?

4. Can we quantify changes in risk (or probability of failure, or

percent items which fail) due to modifications in the design?

There is a need to take a hard look at the high temperature,

low cycle fatigue design process from a probabilistic viewpoint to attempt

to answer these questions and thereby formulate design strateQies which

ould reduce engine weight and provide real cost benefits.

Because of significant uncertainties in fatigue design fac-

tors, a probabilistic-statistical approach seems particularly relevant.

All design factors are treated as random variables. Recent develop-

ments in probabilistic design theory can be utilized to predict distri-

butions of fatigue life, or to establish design rules.

Commonly slated reasons for using a probabilistic approach

to :_sign include the following:

I-3



I. It is argued that reliability (or its complement, risk or

probability of failure) is the most meaningful index of structural

performance.

2. The effect on risk of m_king a design modification can be

quantified.

3. A mechanism is provided for explicitly accounting for avail-

able statistical data on design factors, e.g., in cycles to failure

fatigue data.

4. Factors which have nonstatistical uncertainty (due to assump-

tions made in analysis) can be treated as random variables. Their el-

fect on design can be quantified and their relative importance assessed.

This information can provide guidance for decision makers regarding

which elements of the problem require further scrutiny. A rational

basis for decisions regarding research programs is available.

5, All components can be designed to a balanced level of risk,

thereby producing a more efficient system.

6. Probability based information on mechanical performance can be

used to develop rational policies towards pricing, warranties, spare

parts requirements, etc.

In summary, probabilistic design theory provides an improved

engineering representation of reality.

I-4



1.3 An lllustration of the Conservatism in Conventional Design
Procedures

Design procedures and codes traditionally rely on a factor

of safety (applied to material strength) to insure acceptable reliability.

Such procedures have performed well, but it is generally thought that

requirements are typically overly conservative and that they produce

designs having an inconsistent level of risk among the components. At-

tempts to estimate materials savings which could be realized by prob-

ability based design criteria have produced figures of about I0%. Thus,

application of reliability methods to vehicle power plant Jesign promises

a payoff in weight savings at the same reliability levels.

As an example, consider the simple design problem illus-

trated in Fig. 1.1. The bar is subjected to a harmonic axial load Q(t).

Fatigue is considered the principal mode of failure. The service life

is given as NS = 500,000 cycles.

Because of analysis procedures, the amplitude Q is con-

sidered to be random. Statistics on Q are available. The mean value

is UQ = 16 kips (71.2 kN) and the coefficient of variation CQ = O.lO

The distribution of Q is lognormal. As a design value, a point on the

safe (upper) side of the distribution Qo is chosen as the median plus

three standard deviations on a log basis. The calculations are sum-

marized in Table I.I. See also Appendix I.

Data is available on the fatigue behavior of the material as

shown in Fig. l.l. A basic linear model is assumed (See Chapt. 3 and 4)

on a log basis, and the least squares curve established. The model for

I-5
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FIG. 1.1
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cycles to failure is N : K_m where the median and coefficient of varia-

tion of K, denoted as K and Ck are given in the figure.

But the designer chooses a curve on the safe (lower) side

of the distribution as the least squares line minus three standard

deviations on a log basis. This curve is defined by NSm : Ko

The conventional approach commonly will require a design

life NO higher than NS. A factor of 2 is used here The design require-

ment using conventional methods is given in Table h._.

Because statistics are available, the risk inherent in this

design can be estimated as shown in Table l.l. Definitions and details

are provided in Chapter 7 and Appendix I. The estimated risk of

1.92 × lO"6 is generally considered to be overly conservative for mech-

anical and structural components where the consequences of failure are

not disasterous. A target value of the _robability of failure pf : lO "3

is accepted as being more reasonable.

Using a value of pf = lO-3 as the basic requirement, a

probability based design produces a smaller component. The estimated

weight savings of 15% by using a reliability approach compares with an

often quoted estimate of I_% for the level of excess material required

by present design codes.

In summary, it was intended that this example illustrate

the fact that excessive levels of reliability can be produced by a

"pile-up" of safety factors applied to each component of the design al-

gorithm. It was not the intention to imply that all deterministic

design codes and procedures are overly conservative.
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TABLE l .l

Calculations: Conventional vs. Probabilistic Design

CONVENTIONAL (DETERMINISTIC) DESIGN

OEstablish Design Values (see also Appendix I for mathematics of
lognorma! variates)

LnQ0 : _nQ + 3_zn Q

Q: _Ql/l + C_

OLnQ = /_n(l + CQ)

znK o : _nK - 3C_.nK

a ;_nK : _n-T[-T-C_

Qo = 21 5 kip
= 95.7 kN

K
0

= 1.25 x 1018 (ksi units)

: 5.20 x 1025 (MPa units)

QDesign Life

N = 2N : I00,000 cycles
0 S

ODesign Stress

So = Qo/A = 21.5/A ksi

i_ Desi gn Equation
-m

Cycles to failure, N : K S > N
0 0 0

_Solution 2
Area, A > 0.78 in (5.03 cm2)"

Diameter D > 1.00 in (2.54 cm)

RISK IMPLIED BY THIS DESIGN

O Safety Index

: _n(NIN s )

_nN

N : _/(Q,)_

- : 4n<(_+ c_)(I + c_)m:_nN

= 4.62

QProbability of Fallure

Df = _ (-?J pf : 1.92 x 10 -6

I-8
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... TABLE l.] Continued

REDESIGN USING RELIABILITY METHOD

-3 (reasonable level)OTarget pf = lO

Target _; = 3.09

OSolution (using above equations)
Area, A = 0.66 in.!
Diameter D = 0.92 in

PERCENT WEIGHT SAVINGS BY USING RELIABILITY METHOD : 15S

, I-9



1.4 Goals of This St,ud i

The ultimate goal of this study is to recommend methods of

reliability analysis for the development of probability based design

criteria for fatigue design in general and high temperature fatigue in

particular. It _s intended that this study provide practical information

for engine designers.

Specific goals include the following.

I. To develop methods of providing statistical summaries of

data for design purposes, i.e.,

a. Design values and/or design curves

b. Appropriate statistics which are required for a

reliability analysis.

2. To recommend methods of probabilistic design for a

complete reliability analysis of a component subjected to

high temperature, i.e., the problem where several random

design factors appear in an equation and where it is re-

quired to evaluate the risk.

3. To present the results of this study in a format for easy

implementation for engine designers

I-I0



1.5 What is Contained in Thi s Report

This report summarizes the results of the first year of a compre-

hensive study on fatigue/creep reliability supported by the NASA/Lewis

Research Center. It is intended that this report provide practical

information useful for designers.

Chapter 2 summarizes methods available for statistical analysis

of ata on a single variable. Various schemes for establishing a design

value are presented.

Chapters 3, 4 and 5 summarize procedures for providing statistical

summaries of S-N fatigue data. Linear model analysis is presented and

applied to both homo- and heteroscedastic data. Preliminary consider-

ations of data analysis using the general strain-life model are included.

Attempts are made in Chapter 6 to present a coordinated overview of

the three basic approaches to formulating a fatigue design equation.

Performance of Miner's rule and strainrange partitioning are described

by statistical summaries.

Chapter 7 probides a summary of available reliability methods for

fatigue design. Two examples are presented in Chapter 8. One is a

strainrange partitioning example. The other is of a local strain analysis

model.

This report is considered preliminary. Work is continuing in all

areas, and future reports will provide more complete information.

1-II



1.6 List of General References for Reliabilit_ and Probabilistic Desi,._n_

The following references include some of the more important

sources of information in elementary applied probability theory and

statistics, probabilistic design and fatigue reliability. The list

is by no means exhaustive and does not include many excellent texts

in specialized areas of reliability engineering, quality control,

random process theory, etc.

..... for basic probability and statistics

Ang, A. H.-S, and Tang, W., Probability Concepts in Engineering

Planning and Design, Wiley, 1975. Excellent text for engineer-

ing problems and statistics, but oriented to civil engineering.

Benjamin, J. R., and Cornell, C. A., Probabilitx, Statistics and

Decision for Civil Engineers, McGraw-Hill, _7_. An excellent

reference for engineers of all types, uses modern techniques

with many examoles, probably one of the best general references

available for engineers to date.

Bowker, A. H., and Lieberman, G. J., Engineering Statistics,

Prentice-Hall, 1972. An excellent reference, strong on test-

ing hypotheses and quality control.

Hines, W. H., and _ntgomery, D. C., Probability and Statistics in

Engineering and Management Science, 2nd Ed., Wiley, Ig80

Lipson, C., and Sheth, N. J., Statistical Design and Analysis of
Engineering Experiments, McGraw-Hill, 1973. Treats problems

from mechanical engineering design theory.

Meyer, P. L., Introductor_ Probabilit_ and Statistical Applications
Addison-Wesley, Ig70. An excellent introduction to modern

probability theory and mathematical statistics.

Mood. A. _. , and GrLyhill, F. A., Introduction to the Theor_ of

Stat_t(cs, McGraw-Hill, 1963. Intermediate statistics, and

a-,_Filt_-Ji_fic,J!t for a beginner.

Natrella, M. G., Experimental Statistics, Deot. of Commerce, 1963.
An excellent statistics "cookbook" full of examples on how-to-

do-it in testing hypotheses and many other tests.
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..... for probabilistic design

Ang, P. H.-S., and Cornell, C.A., "Reliability Basis for Structural
Safety," Journal of the Structural Division, ASCE, Sept. 1974.

Corne]l, Ca.A., "A Probability Based Structural Code," ACI Journal,
Dec. 1969.

Dialog, Second International Workshop on Code Formats, Mexico City,
Jan. 1976, Danmarks Ingeniorakademi, Building 373, 2800 Lyngby,
Denmark.

Ellingwood, B., et a1., "Development of a Probability Based Load

Criterion for American National Standard A58," NBS Special
Publication 577, June 1980.

First Order Reliabilit_ Concepts for Design Codes, Bulletin D'Infor-
marion If2, Comite Europeen du Beton. Munich, July 1976.

Freudenthal, A.M., Garrelts, J.M., and Shinozuka, M., "The Analysis
of Structural Safety", Journal of the Structural Division, ASCE,
Voi.92, No ST1, Feb. 1966.

Galambos, T.V., Ravindra, M.K., (and others),.., a series of eight

papers on Load and Resistance Factor Design (LRFD) in the Journal

of the Structural Division, Vol. IO4, No. ST9, Sept. 1978.

Hasofer, A.M., and Lind, N.C., "An Exact and Invariant First Order

Reliability Format," Journal of the Enq!neerin 9 Mechanics Division_

ASCE, February 1974.

Haugen, E.B., Probabilistic Mechanical Design, Wiley, 1980.

Haugen, E.B., and Wirsching, P.H., "Probabilistic Design," a five part

series in Machine Design, starting April 17, 1975.

Kececioglu, D.B., and Cormier, D., "Designing a Specified Reliability

into a Component," Proceedings of the Third Reliability and Main-

tainability Conference, Washington, D.C , 1964.

Probabilistic Mechanics and Structural Reliability, (ed. A.H.-S. Ang
and M. Shinozuka), AS'C_ Tucson, January 1979.

Probabilistic Methods in Structural Engineering (ed. M. Shinozuka and

J.T.P. Yao), ASCE, 1981.

Rationalisation of Safety and Serviceability Factors in Structural

Codes, Report 63, CIRIA, Construction Industry Research and Infor-

mation Association, 6 Storey's Gate, London SWIP 3AU.
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..... for fatigue reliability (manyother references cited in text)

Ang, A. H.-S., and Munse, _.H., "Practical Reliability Basis For
Structural Fatigue," ASCENational Structural Engineering Confer-
ence, Preprint 2494, April 1975.

Ellingwood, B., "Probabilistic Assessment of Low Cycle Fatigue Behavior
of Structural Welds," Journal of Pressure Vessel Technology, ASME,

Paper 75-PVP-29, February 19"76.

Fatigue Reliability: A State of the Art Review, a four part series

I. "Fatigue Reliability: Introduction"

2. "Fatigue Reliability: Quality Assurance and Maintainability"

3. "Fatigue Relibility: Variable Amplitude Loading"

4. "Fatigue Reliability: Development of Criteria for Design"
Journal of the Structural Division, ASCE, Vol. I08, No. STI, Jan.

1982.

Fong, J.T., "Uncertainties in Fatigue Life Prediction and a Rational

Definition of Safety Factors", Nuclear Engineering and Design,

Vol. 51, 1978.

Freudenthal, A.M., and Gumbel, E.J., "On the Statistical Interpretation

of Fatigue Tests," Proceedings of the Royal Society of London,

Series A, Vol. 216, 1953, pp. 309-322.

Freudenthal, A.M. and Gumbel, E.J., "Physical and Statistical Aspects

of Fatigue," Advances in Applied Mechanics, Vol. 4, 1956.

Kececioglu, D.B., and Chester, L.B., "Combined Axial Stress Fatigue

Reliability for AISI 4130 and 4340 Steels," ASME Paper 75-WA/DE-l17,
1975.

Little, R.E., and Jebe, E.H., Statistical Design of Fatigue Experiments,

Applied Science, 1975.

Whittaker, l.C., Besuner, "A Reliability Analysis Approach to Fatigue

Life Variability of Aircraft Structures," Wright-Patterson Air Force

Base Technical Report AFML-TR-6g-65, A;ril Ig6g.

Wirsching, P.H., "Fatigue Reliability of Welded Joints in Offshore

Structures," Proceedings of the Offshcre Technology Conference OTC

3380, 1979, also published in the International Journal of Fatigue,

April Ig80.

Yang, J.N., "Statistical Approach to Fatigue and Fracture Including

Maintenance Procedures" Fracture Mechanics, U. of Virginia Press,
1980.

Yao, J.T.P., "Fatigue Reliability and Design", Journal of the Structural

Division, ASCE, Vol. lOO, No. STg, September 1974.
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Chapter 2 METHODS OF DATA ANALYSIS OF A SINGLE VARIABLE

2.i Preliminary Remarks

Given a random set of observations on a design factor, it is necessary to

interpret the data in order to make a design decision. For example the random

sample of Table 2.1 is cycles to failure fatigue data for tests at a single

stress level. In order to insure an acceptably low level of risk (of proba-

bility of failure) it may be necessary to specify either a "design value" on

the safe (lower) side of the distribution or the statistics of the variable,

depending upon the design strategy used.

This chapter summarizes various statistical tools which can be employed

to provide designers with information that they need to make decisions on a

single variable. Later chapters deal with analysis of SN data. The focus of

this report is on fatigue, but techniques described herein have wide appreciation.

2.2

that cycles to failure, denoted as N, be treated as a random variable.

fore a probability densit X function (pdf) fN(n) is defined such that

nB

P(nA < N < nB) = J fN(n)dn

nA

where P(.) denotes the probability of the event in parentheses.

The cumulative distribution function (cdf) FN(n) is defined as

n

FN(n) = P(N <. n) : jfN(X)dx

where n denotes a specific value of the random variable N.

2-I

Mathematical Tools for Probabil.ity Estimates

Because observed cycles to failure has significant scatter, it is suggested

There-

(2.1)

(2.2)



Table 2.1

Cycles to Failure of Specimens Tested at the Same Stress Level [Ref: Evans (13)]

N .

1

Cxcles to Failure (103 cycles)

15.4

22.2

17.3

23.6

14.4

12,3

16.5

25.7

17.5

27.0

20.5

21.3

14.0

27.0

23.0

23.6

16.0

14.7

10.3

16.0

13.0

31.0

Sample Size, n

Sample Mean,

Sample Standard Deviation, SN

Sample Coefficient of Variation

: 22

= 19.2 (103 cycles)

= 5.59 (103 cycles)

= 29.1%
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_,nexample of a pdf and corresponding cdf is given in Figure 2.1. Note

that all of the information about probabilities of N is contained in the pdf

and cdf.

Th mean L_N and standard deviation _N are defined as,

oo

_N = I nfN(n)dn (2.3)
J

_c)o

qN (n - UN)2fN(n)dn (2.4)

The mean is a measure of the central tendency and the standard deviation is

an index of the degree of variability. Another measure of central tendency is

the median, N,defined as the 50% point of the distribution

FN(N) : P(N < N) : 0.50 (2.5)

The coefficient of variation CN is defined as

CN = _N/UN (2.6)

This term, commonly used in probabilistic design literature, is a non-dimensional

measure of variability.

Ultimately we wish to make statments regarding risk (or probability of

failure) which we can do if we have FN(n) and/or fN(n). But at this stage all

we have is the random sample Ni, i = l,k of Table 2.1. The remainder of this

chapter deals with the problem of statistics, i.e. how we take the random sample

and make probability statements for design purposes. The example used herein

is of cycles to failure data, but the analysis presented applies to any random

variable.

2-3



Fiaur_ 2 1

At; 'l]ustra_ion of tne Probability Density Function (pc1f)

. _r,bution _unction ,¢d, )_rres_ondin_ _:-_,._'lat;'-e Di -_ _ '

PROBA31LITY

DENSITY

FUNCTION

fN(n)

CUMULATIVE

/ , AREA : P(c ! N I d)

iJ° MEAN, uN --I
V- --

c d n

DISTRIBUTION ]

FUNCTION 1 "--'-" "--"

FN(n)

I I
_. I •

a MEI_IAN, N"
n

2-4



2.3 Basic Statistics

The sample mean N is a measure of the central tendency

k

i=l

(2.6)

where k = sample size. _ is an estimate of u N,

The sample standard deviation s N is a measure of the dispersion or scatter

in the data

i /2s,: - (2.7)

_N is an estimate of aN .

For the data of Table 2.1, N = 19.2 and sN : 5.59. The sample coefficient

of variation is CN = SN/N : 0.291.

This value of CN is typical of fatigue data at relatively low lives as

illustrated in Table 2.2. The values listed give evidence of the relatively

large scatter which exists in fatigue strength data. For example, yield and

tensile strengths for a wide variety of materials are typically less than ]0%

and usually about 5%.

The data of Table 2.2 also suggest that scatter is greater at lower stress

levels and longer lives. This seems to be a general rule for smooth specimen

data.

The emlirical cumulative distribution function, an estimate of FN(n), can

be established as demonstrated in Table 2.3 (the data from Table 2.1). A

smooth curve through these points is an estimate of FN(n). Examples of how

the empirical cdf is used are given in Section 2.5.
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Table 2.3

The Emprical Cumulative Distribution Function for the Data of Table 2.1

(n : 22)

Order Number, i

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

Ordered Data, N
(i)

10.3

12.3

13.0

14.0

14.4

14.7

15 ._

16.0

16.0

16.5

17.3

17.5

20.5

21.3

22.2

23.0

23.6

23.6

25.7

27.0

27.0

31.0

* " - 1/2
Empirical cdf , F. = -

l n

.023

.068

.i14

.159

•205

.250

.295

.341

.386

.432

.477

.523

.568

.614

.659

.705

.750

.795

.841

.886

.932

.977

*Many other forms which give similar results have been suggested, but this

one (sometimes called the "Hazen formula") seems to generally perform well

and is widely used by engineers.
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2._ Statistical Models lJsed in Fati_ e

In order to make design decisions based on a set of observations of a design

factor, it is necessary to descrlbe the distribution of that factor. In that

regard, statistical models are usually employed. The random variable rl denoting

cycles to failure is often described with a two parameter Uei_uli or

lounormal model. A summary of these models as well as the normal and the

three oarameter Weibull is provided in Tables 2.4 through 2.7. The normal is

included in this discussion primarily for reference. The three parameter Weibull

has been used as a model for fatigue data; practical _nd analytical difficulties

associated with the use of this distribution are summarized later.

The lognormal and two parameter Weibull are most commonly used to describe

N. Use of the lognormal distribution has been based primarily on arguments of

mathematical expediency. However physical arguments favor the Weibull for

most material strength variables because it is an asymptotic distribution of

minima of a sample (7), If failure of a structural element is precipitated by

_ailure of the first of a large number of sub-elements, then the Weibull is

likely a "good" model.

Moreover, it has been pointed out by Gumbel (8) and demonstrated in Figure

2.2a that the hazard function decreases for large N which violates our physical

understanding of progressive deteriorazion resulting from the fatigue process.

Also mote from Figure 2.2b that for the same statistics, the iJeibull gives

larger probabilities in the left tail. Use of the Weibull should produce

conservative designs relative to the lognormal.

Nevertheless, the lognormal is often much easier to use. Methods of

linear model analysis commonly used on SN data rely on a lognormal assumption

for N. Probabilistic design procedures in a lognormal format have been

developed. Furthermore, this author has found, more often than not, the log-

normal provides a better fit than the Weibull to real fatigue data.

2-8



T_BLE 2.4

4 She"MARY OF THE NOR_AL DISTRIBUTION

°robabi i "_ Jl_D 3ensitv Function

Statistical parameters

uN = mean value of I_1

o_N : standard deviation of [4

Distribution Function: Probability Calculations

FNtn) = P(N <_ no) :@il no - u

where _,(') : standard normal distribution function

(definition, e.g. Reference 14)

n = any specific value of Nc

How the Parameters are Zstimated from Data

Data: N = (NI, N2 ... Nk)

_ompute the sample mean N as an estimate of _N

Lomoute the sample standard deviation sN as the estlmate of '_N

2-9



Table 2. _

,, r_m_9. SL:_,%_RY OF THL LOG,_O..AL OISTRIBUT[O_I*

'I is said to _ave a lognormal distribution if X : In N (or :( = ion ^;_) has _
-Iu

normal distributlon.

• DrobaDilltv _enslty Function (base e)

1 ,r (ln n - L_ ) 2"I'
i I

- L- x]fN(n) = _ ex_ ' 2
,/2_Jxn , 2_ x

Statistical oarameters

11
X

X

: mean value of X

: standard deviation of X

•Distribution _unction Probabillty Calculations

F,l(n ) : °(N < n ) : _In n - u
0 " 0 . 0 X,

L JX

or
iOn - Ux_

"lono

_x

where _(') : standard normal dlstribution function

*See Appendix 1 for a comprehensive summary of the lognormal distribution

and its application in probabilistic design.
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Table ;3.5 (continued)

Reiatlenships between Paramer_ers and ".oments (i.e., mean and standard deviation)

Ba se e

= In N (See note below)

a x : In (l + C ,

Base I0

1
_X = lOalOU_l - 9-1oalO(1

a_ : 0.¢34 loq10(1 + C_)

+c4)

1 2"

uN = exp[_ x + _._X J

d 2

a_l : u_(e X . 1)

_N: l°{ux + 1/2(_x/'_3_')}

I (o_/.<,34)
Cri : 710 - 1

cN : dexp(ax2)- 1

How the Parameters are Estimated from Data

Data _]: (Nl,,_I2...qk)

Let Xi : In Ni (or lOgl0N i)

Let sample mean X be the estimate of ux

Let sampJe standar_ deviation s oe the estimate of
X X

Note:
A useful relationship between the median N and the mean UN
can be derived as

N : uN I ,'I+ CNT

2-11



Table 2.6

A SUMMARYOFTHETWOPARAMETERWE[BULLDISTR[BUTrON

Distribution Function; FN(n) : P(N _ n)

FN(n) : l - exp i . (n)

Statistical Parameters

= shape parameter
8 : scale parameter

n_O

Probability Density Function

)a-IfN(n) : (_/_)(n_ exp _() !

Relationship between Parameters and Moments

u N : Br(ll_ + I)

CN : _ 1
+ l)-l 

where ?(.) : the gamma function

-I.08
A useful approximation _ z CN for 0.02 _(CN .<2.00

How to Estimate the Parameters (Method of Moment Estimators)

Data N = (Nl, N2, ... Nk)

Compute sample mean _ and sample standard deviation of SN.

)-l -Let m :(SN/N .08 be an estimate of m and _ = N/1"(I/._+ l) be an

estimate of

(Method of Moments)

2-12



Table 2.7

A SU'_ARYOFTHETHREEPARA_,ETERWEIBULL

Distrlbution Functlon: F,_l(n) : D(N I_ n )
q

i "_ j

n "_ ",

Orobability Density Function

!
Relationshi9 Between Parameters ana _,oments

um : y + _F(I + II_)

How to Estimate the .Parameters

Maximum L1kellhood Estimators

Ref: Mann et al (9)

Least Squares Estimators

See Sections 2.5 and 2.6
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2.5 Probability Plots; Rectification of the Distribution Function

A probability plot can be used as a basis for making a subjective judgement

on how well a set of data fit a particular distribution. Following are the

transformations on the normal, lognormal and Weibull (2 and 3 parameters) which

permit their distribution functions to be plotted as straight lines.

(a) Normal distribution; the distribution function is,

FN(n ) : _ n-

where ¢ is the standard normal cdf, and u and _ are the mean and standard

deviations of the random variable N.

Inverting, this expression

n - u = ¢-l(F ) (2 9)

and

#-I(F) : n - _
C_.

(2.1o)

A linear relationship Y = AX + B has been established where

Y z _'l(F), X = n, A = l/_, B = -u/_ (2.11)

(b) Lognormal distribution; the distribution function is.

FN(n) = _i In n " _
0 X

(2.12)

where X : In N.
Here the statistical parameters are _X and _X which are the

2-]5



mean and standard deviations of X : In N. Inverting,

In n - 'JX

_X

"I(F) (2.13)

' I
.>-I(F) = il__ !In N - (_X

_x i_-i
(2.1_)

A linear relationship has been developed for _-l(F) and In (n). Here

Y = _-l(F) X = In N, A = 1/c X B = -u /c (2 15)' ' X X" "

The mean and coefficient of variation of N is,

1 2
uN = exp [ux + _X ]

p

c.=Jexp(  )-l

{2.16)

Ic) Weibull (2 parameter) distribution; the distribution function is,

FN(n) : l - exp[-(n./B)_] (2.17)

where _ and B are the statistical parameters. Inverting,

-(nlB) _ = In (I - F). (2.18)

Taking the log of both sides,

c_(In n In 3) : In I-In (l - F)]

2-16
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Let,

Y : In [-In (I - F)]

X:InN.

(2.20)

Then, Equation 2.17 becomes linear,

Y = AX + B (2.21)

where

A = m, B = -_ In _ (2.22)

The mean and coefficient of variation of N in terms of _ and 3 are

uN : s, + l)

- .925
CN = ,_,

(2.23)

where 7(.) is the gamma function. A chart which enables convenient evaluation

of the gamma function is provided (Figure 2.3). The expression for C_ is

approximate, but the error is small for 0.02 < CN < 2.00.

(d) Weibull (3 parameter) distribution; The transformation described above

for the two parameter Weibull applies directly to the three parameter model

when the following transformation is made

Y = In(N - y) (2.24)

L

L

The parameter Y must be known in advance (see discussion below on the least

squares method).
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Using the above information for the transformation of each statistical

model, one can plot F vs. N as a straight line on rectangular paper with the

appropriate variable representation on both X and Y axes. Incidentally, this

operation is performed routinely using appropriate probability paper but

automatic plotting was used herein.

The empirical distribution function F for the example defined in Table 2.2

was plotted in Figure 2.4 on "lognormal paper". Note that Fi is an estimate

of the actual cdf, FN(n). Thus, because the data tends to plot as a straight

line in _igure 2.4, the lognormal may be a "reasonable" model for N. This

test is of course, entirely subjective.

Addressed now will be the question of how to determine quantitatively

which model, e.g. lognormal or Weibull, best fits the data. This issue is

discussed in Sections 2.6 and 2.7.

2.6 .Comparison Test Using the Least Squares Method

Using ?robability plots, comparison of the fit of each model can be made

analytically by (a) computing the least squares estimators thereby defining

the least squares line, (b) measuring the amount of deviation of the data from

the least squares line and (c) choosing that model which has the least deviation.

Using the least square method, a straight line can be fitted through these

data points (see Sec. 3.2.1). The least squares line is an estimate of

Y = A + BX
(2.25)

where the least squares estimates ,A and E_of A and B are,

: _XiY'] " nX_

-
2-19
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A : " B_! --

and where X and _ are the sample means of X and Y, respectively.

The least squares line is shown for normal, lognormal, and Weibull plots

of the data of Table 2.2 in Figures 2.5, 2.6 and 2.7. The purpose of such an

analysis is to provide a test (albeit subjective) for establishing which

model provides the best fit of the F-N data. The model for which the data

seems to best plot as a straight line is the one which is the "best fit".

Such an exercise is not always successful in identifying the best model

as Figures 2.5, 2.6 and 2.7 ill ustrate. All three models seem to provide

a reasonable representation. Therefore. an objective test is necessary.

A computer program (LESQUE-I) has been developed to analyze F-N data.

A

The output includes, (a) determination of the least squares estimators A

and B, (b) the parameters of the model from the least squares line and

t-,

(c) the sample correlation coefficient :;. The coefficient of correlation

is used as a measure of goodness fit. The sample correlation coefficient,

denoted by _, is expressed as,

l n -X. - X_i_Yi - Y
c = - _" ( ; ,_-- (2.27)

n _ SX " Syi:l_ .Yk_ ,

with -I _< _ _ I and where ,X and Y are the sample means and

l Fl
= - T (Xi - _)2

SX n iZl , (2.28)

Sy has a similar expression.

c is computed for each model. If all the data fell on a straight line,

: = 1 (or -I). If the data indicates no linear relationship, c = O. Therefore

the model having a larger : suggests a better fit.

2-21
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The program was used to analyze the data of Table 2.2 for the two

parameter models, normal, lognormal and Weibull. Upon examination of the results

in Table 2.8 it is seen that the values of _ are relatively close, and the

lognormal is the winner. A more discriminating index for comparison of these

data is a correlation parameter defined as

: ,q - _ (2.2g)

A much larger separation exists between these values as shown in the table.

is inversely proportional to _. Thus smaller { indicates a better fit, and

the lognornkll is the best fit of these two parameter models.

t
I_kc

L_'

I !

2.7 Least Squares Analysis of the Three Parameter
Weibull -- Some Editorial Comments

A least squares analysis routine (LESQUE-II) for the three paran_ter

Weibull (TPW) was developed independently. Analysis is similar to the two

parameter case, except that the parameter., must be specified before analysis

can proceed. An iterative scheme is used for obtaining the least squares

estimator of ,-, denoted as ",,. A trial value of y is chosen and c is computed.

The least squares estimator _ is obtained by repeating the process to find

the value of y which makes ,,a maximum.

An analysis of the data of Table 2.1 was performed. The probability

plot is given in Figure 2.8. Values of ._and _ are given in Table 2.8.

The three parameter Weibull (TPW) is frequently used as a model for cycles

to failure (e.g. Fong (16)) and the ASTM has recommended the use of the TPW(17).

The TPW is attractive because the location parameter y defines a non-zero lower

bound on the sample space. In theory, such a model seems more realistic than

the two parameter models which permit values (albeit with small probability)

down to zero. 2-25



Table 2.8

Summary of Results of the Least Squares Comparison Test

on Data of Table 2.2

Two Parameter Models

Norma l

Lognorma 1

Weibull
m

Three Parameter Mo<lel

Weibul I

Correlation Coefficient

p

.9797

•9876

.9683
i

• 9908

Correlation Parameter

0.200

0.157

0.250

0.135

Best fit of the two _arameter models
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Figurl 2.8

Fatigue Data of Table 2.1 Plotted on Weibull

Probability Paper (Three Parameter Weibull)
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There are however some undesirable features of the TPW which may make its

us_ impractical in certain cases:

I. The TPW is a very difficult distribution to use because

a) A complicated iterative program is required to compute estimates of

the parameters, e.g. the {naximum likelihood estimates (9).

b) Distributions of the estimators for routine statistical operations

such as confidenc_ intervals, testing hypotheses, etc. are difficult

if not impossible to obtain.

c) Complicated numerical analysis is required (integration or Monte Carlo)

for any reliability analysis involving any other random design factors.

2. The results given in Table 2.8 show clearly that the TPW provides a better

fit to the Table 2.1 data than the three two-parameter models studied, but

this comes as no surprise. More parameters produce a better fit. Why not

use a four-parameter model,.., or five?

3. Figure 2.9 show the density function of the fitted TPW relative to the

data. Values of the location parameter Y, and the smallest sample point

N(l ) are as shown. Note that y is only slightly below N(l ). Moreover,
A

recall that y is a point below which we are absolutely certain that no

^

future values will fall. Examination of these values of _ in light of the

scatter in the small sample suggests that to define y as a lower bound is

risky to say the least (e.g., the normal model predicts that 3% of the data

will fall below ¥).

4. Because of the truncation of the distribution at a level which may be too

high, use of the TPW may result in risk estimates which are too low. Thus

it is likely that the model may produce unconservative designs.
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2._ Another Comparison Test Based on Fit to the Empirlcal Distribution Fm_ction

Wirsching and Carlson (lO) developed an objective method for determining

which of several competing statistical models best describes the data. Their

test is based on dev;ations between the empirical and hypothesized distribution

functions.

Let F. denote the empirical cdf, which is determined from the sample and
1

is an estimate of the cdf of X. The cdf of the jth model considered is Gj(x;_)

where _ is the parameter as estimated by the data.

The rationale for the test is that if Gj(x;e)~ is the sampling distribution

of X, or a good approximation thereof, and Fi will tend to be "close to"

Gj(x;_).~ The W-statistic, a measure of this closeness, is based upon a form

similar to the Cramer-von Mises statistic used for goodness-of-fit test_

where

n

W_ = i Z Di2 (2.30)
n i=1 'J

Dij : Gj(xi;_) . Fi (2.31)

Deviations associated with the W-statistic are shown in Figure 2.10.

The value of W. is computed for each of the competing statistical models.
J

The model having the smallest Wj is considered to be the best fit. The W-

statistic is computed for the normal, loqnormal and Weibull usin¢ the data of

Table 2. l.

W-STATISTIC OF DATA OF TABLE

Normal 0.0591

Lognormal 0.0491

Weibull 0.0525
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Figure 2.10

Devidtions Associated with the W-Statistic

Note that the deviation associated with each xi is the vertical

distance from the top of the step of empirical-calf, F(xi), to

ti)e hypothesized cdf Gj(x i)

_"-Gj (x i ;_)...

Xp xq

F(x i)

X
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This test agrees with the least squares comparison test by ranking the

lognormal as the best. However the two tests disagree on the normal and Weibull.

It is the opinion of the author that the W-statistic is the more powerful test.

2.9 The Lognormal Assumption

For the most part it will be assumed herein that the lognormal is the

governing distribution for not only cycles to failure data, but also for the

other fatigue design factors. See Appendix I for details of method. The

reasons for the use of the lognormal are;

I. The lognorma] generally has been shown to provide a reasonable description

for the distribution of a wide variety of design variables. For example,

upon analysis of cycles to failure data, using methods described above,

the author has found that the lognormal consistently provides a better

fit For fatigue data than does the Weibull or normal.

2. Statistical properties of the lognormal are well defined. All of the

theory developed for normal, e.g. confidence intervals for the mean,

apply equally to the lognormal.

3. The lognormal is easy to use. For example if fatigue life T is a

multiplicative function of several lognormal random variables, then T

is exactly lognormal and it is a simple _atter to compute failure proba-

bilities

4. Reliability formats using the lognormal can easily accomodate design

variables having relatively large coefficients of variation. Some formats

rely on small variance assumptions for the design factors.

5. The lognorn_l is already widely used in the design profession. For example,

commonly used methods of linear model analysis for characterizing S-N

fatigue data implicitly assumes that cycles to failure has a loQnormal

distribution (o.e., see Chapters 3 and 4).
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2.10 The Use of the Tolerance Interval of Establishin 9 a Design Value

The "tolerance interval" can be used to establish consistent and

rational design values on the safe side of data. (For a general reference,

see Natrella (II)). Design values in M_L-HDBK-5, for" example, are based

on tolerance intervals (12). The following discussion describes the

rationale and demonstrates the operation of establishing the lower toler-

ance limit as a design value. Unfortunately, while this analysis can

specify a lower bound to SN data, it fails to provide a mechanism for

consideration of other factors in the fatigue equation which are subject

to uncertainty.

As an example, consider the cycles to failure data of Table 2.1.

It is assumed that N has a lognormal distribution so that Y=log N has a

normal distribution. Values of Yi' as well as the sample mean Y and

sample standard deviation,s,of Y are given in Table 2.9.

Suppose, for example, a decision has been made to establish a design

YD (or ND=IOYD) as the value below which it is anticipated that novalue

more than l_ (_=O.Ol) of future measurements would be expected to fall.

Figure 2.11 illustrates YD relative to the distribution of Y. The value

of YD and the corresponding ND are easily calculated, assuming that Y has

a normal distribution with mean Y and standard deviation s.

i

Design Value for Y:

In general

YD = _-Zl s

In this example

YD = 1.27 - (2.33)(0.127) = 0.9741
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Table 2.9

Cycles to Failure of SpecimensTested at the SameStress Level
N°

1 03Cycles to Failure (l cycles)

15.4

22.2

17.3

23.6

14.4

12.3

16.5

25.7

17.5

27.0

20.5

21.3

14.0

27.0

23.0

23.6

16,_

14.7

I0.3

16.0

13.0

31.0

n:22

Yi : l°gloNi

l.19

l.35

l.24

i .37

l.16

l.09

l.22

l.41

l.24

l .43

l.31

l.33

l.15

l.43

l.36

l .37

l.20

l.17

l.Ol

l.20

l.ll

l .49

Y=I.27

s=0.127
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Figure 2.11

Design Value for N Based on Assumption that

Y is Normal (T, s )*

Density function

fy(Y)

: 0.01

Y: logN

/
: 0.9]4 7 : 1.27

'D

Cycles to Failure,

, ( N(IO 3 cycles)
ii i

9.42 18.6

"As explaine_ in the text, this approach gives non-conservative design
values because it fails to account for the fact that Y and s are

themselves random variables.

2-35



_ Design Value for N:

In general

ND = IoYD

In this example

ND = lO0.9741 = 9.42 (lO3 cycles)

(2.33)

It is estimated that there is only a I% chance that a specimen

selected at random would have N cycles to failure less than 9.42 thou-

cycles. Stated another way, for a large number of specimens we would

expect about I% of them to have cycles to failure less than 9.42 thou-

cycles.

But the analysis of Figure 2.11 fails to account for the fact that

and s are themselves random variables. Thus, YD' as seen from Eq 2.32,

is a random variable, and ND from Eq. 2.33 is also a random variable.

For example, if several labs independently conducted this same test

on 22 specimens, each would obtain a different value of ND because o_

inherent randomness in the process. Therefore, ND being a random variable

has its own distribution function F(ND) and it makes sense to say, for

example, that there exists a value of N.O l corresponding to F(N D) = .05.

This value denoted as N and called a "tolerance limit" is the value above

which we may predict w;th 95_ confidence that 99% of the population will

lie. This scheme is commonly used to establish design values (e.g.,

Reference 12).

, is the point below which we expect proportion _ toIn general N

lie with confidence ¥.
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To find a single value Y above which we may predict with confidence y

that a proportion _ of the population will lie

Y : Y - K s (2.34)

where K is found from Table 2.10. Using the above example, n=22, _=0.95,

a=O.O1 and K O1 .95 =3.233 from Table 2.10 (noting that p=l-a)

Y
C_

= 1.27- (3.233)(0.127)

= .8594 (2.35)

R.

i

and the corresponding point for N, denoted as N
C&

N - 10 Ya = 100.8594

for y=.95, _=0.O1 is

N
= 7.23 thou-cycles (2.36)

Consider another example. To establish a "safe life" in turbine discs,

the following criteria is used for civil engines in the UK 03). The safe life

is established at minus three standard deviations from the population mean.

Then there is a 95% confidence that the probability of failure at the safe

life does not exceed l in 750. Note that for the normal distribution• the

tail area beyond three standard deviations is 0.00135 or approximately l in

750.

For n=22 _=0.95 and _=.00135 the value of K is found from interpo-

lation of Table 2.10. K.00135,.95 = _.20Using values from the above example•

Y
c_

= 1.27 - (4.201(0.127)

=0.73£7 (2.37)

The "safe life" is

N
c_

= 10Y_ = lO 0"73E7

= 5.45 thou-cycles (2.38)
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TABLE 2. l0 FACTORS FOR ONE-SIDED TOLERANCE UMITS FOR NORMAL DISTRIBUTIONS *

Factors K such that the probability is 7 that at least a proportion P of the distribution will be less than
+ Ks (or greater than X - Ks), where'X and s are estimates of the mean and the standard

deviation computed from a sample size of n.

_-|-_

6
7
8

9
10

11

12
13
14

15

16

17
18
19
20

21
22
23
24

25

3O

35
40
45
50

0.75

1.464

1. 256

1. 152

1.087

1.043

1.010

O. 984

0.964

0.947

"y = 0.75

0.90 0.95

2.501 3. 152

2.134 2.680

I ..961 2.463

1.860 2.336

11.791 2.250

! 1.740 2.190

i 1.702 2.141

i 1.671 2.103

i 1.64612.073
0 933T1 624
0.919 _ 1.606

0.909,, 1.591
0.8991 1.577

2,048

2.026

2.007

1.991

1.977

I. 964

1.951

1.942

1.933

1.92.3

0.891 1.566

0.883 1.554

0.876 I.F_,4

0.870 1.536

0.865 1.528

0.859 1.520

O. 854

O. 849

O. 845

O.842

1,514 I 1.916

1.508 ' 1.907

1.5021 1.901

1.496 1.895

1.475 i 1.869
1.458, 1.849
1.445 1.834

1.435 1.821

1.426 i.811

0.99

4.396

3. 726

3.421

3.243

3. 126

3.042

2.977

2.927

2.885

2.85I

2.822

2.796

2.776

2,756

2.739

2.723

2.710

2.697

2.686

2.675

2.665

2.656

2.647

2.613

2.588

2.568

2.552

2.538

0.999 0.75

I i'

4.910 1.972

4.507 1.698

4.273 1.540

4.118 i} 1.435

4.0@8 :i 1.360
3.924 1.302

3.858 1 .°,57

3.804

3.760

3.722

3.690

3.661

3.637

3.615

3.595

3.577

3.561

3.545

3.532

3.520

3.509

3.497

1.219

1.188

1.162

1.139

1.119

1.101

1.085

1.071

1.058

1.046

1.035

1.025

1.Olg

1.007

0.999

3.454 0.966

3.421 i 0.942
3.395 _ 0923
3.375 ;i 0.908

3.358 ] 0.894

0.90

_' - .'3.90

0.95

4.258 5.310

3. 187 3.957

2.742 3.400

2.494 3.091

2.333 I 2.894
2.219 2.755

2.133 2.649

2.065 2.568

2.012

1.966

1.928

1.895

1.866

1.842

1.820

1.800

1.781

1.765

1.750

1.736
1.724 t

1.712

1.702

2.503

2.448

2. 403

2.363

2.329

2.299

2.272

2.249

2.228

2.208

2.190

2.174

2.159

2.145

2.132

2.080

2.041

2.010

1.986

i.965

0.825

0.812

0.803

0.795

0.788

1.657

1.623

1.598

1.577

1.560
l

0.99 0.999

7..']40 9.651

5.437 7.128

4.666 6.112

4.242 5. 556

3.972 5.20!

3.783 4.955

3.641 4.772

3.532 4.629

3.444 4.5]5

3.37l 4.42O

3.310 4.341

3.257 4.274

3.212 4.215

3.172 4.164

3.136 4.118
no.106 4.07S

3.078 4.041

3.052 4.009

[
3.028! 3.979

3.007 I 3.952

2.987 I 3.!)27
2.9691 3._m4

2.952 I 3.882

2.884 ' 3.7.94

2.833[ 3.730
2. 793 3. 679

i

2.762, 3.6o8
2.7351 3.604

!

Adlptod by permimton from lndastrial Quatitt _a_t:,ol. Vol. X[V. No. 10. Atlril 1958. from article entitled "TIh|tq for One-Sided

Stati_ticll T,ih,rmnel i.imlUf' by O. J I.iell,.t.rmllrll.

*Nacre!la, M. G., Experimental Statistics, NBS Handbook 91, 1963
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OF POOR QUALIFY

TABLE 2.10(Continued). FACTORS FOR ONE-SIDED TOLERANCE LIMITS FOR
NORMAL DISTRIBUTIONS*

"The two _tarred valm, s have brrn corrected to the values given by D. B. Owen in "Factors for Olm-$1ded "roler_utt_Llmits_md fur Vnatables

::::q,:._ Plan:;', Eandla Corp)ratlon Monograph $CR--607. avndlable from tlm Clearing HouSe for Federal Seienttac and Technics| Inform'_tiom

: :. l)cpulr,:nent ot Commerce, Sprinzfloid, V_. 22151. The Owen Tables Indies, to other errors in the table below, not exceeding 4 in the l_t digit.

L

r-i-_

\ ,

" \

3
4

5

6
7
|
9

10

11
12
13
14

15

16
17
18

19
20

21
22

23
24
25

30

35
4O
45
50

"y = 0.95

0.75 t 0.90 I 0.95 i 0.99

3.804 I 6.158 7.655 t'10'552
4.163 5.1451 7.0422.619 I

2.149 !

1.895

1.732

1.617

1. 532

1.465

1.411!

1.366

1.329

I. 296

1.268

1.242

1. 220

1.2O0

1. 183

I. 167

1.152

1.138

1.126

1.114

1.103

1.059

1.025

0.999

0.978

0.961

0.999

13.857

9.215

•0.75

u

0.90

"Y - 0.99

0.95

i

3.407 4.202

3.006 3.707

2.755 3.399

2.582 3.188

2.454 3.031

2.355 2.911

2.275 2.815

2.210 2.736

2.155 2.670

2. I08 2.614

2. O68 2.566

2.032 2. 523

2.001 2.486

1.974 2.453

1.949 2.423

1. 926 2.396

1.905 2.371

1.887 2.35O

1.869 2.329

1.853 2.309

1.838 2.292

1.778 2.,°20

1.732 2. 166

1.697 2.126

1.669 2.092

1.646 2.065

•5.741

5.062

4.641

4.353

4.143

3.981

3.852

3.747

3.659

3.585

3.520

3.463

3.415

3.370

3.331

3.295

3.262

3,233

3.206

3.181

3,158

3.064

2.994

2.941

2.897

2. 863

7.501

6.612

6.061

5.686

5.414

5.203

5.036

4.900

4.787

4.690

4.607

4.534

4.471

4.415

4.364

4.319

4.276

4.238

4.2O4

4. 171

4.143

4.022

3.934

3.866

3.811

3.766

2.849

2.490

2.252

2.O85

1.954

1.854

1.771

1.702

1.645

1.596

1. 553

1. 514

i.481
!i

1.450

!] 1.424

i': I. 397

i! 1.376
1.355

i 1.336

_:i 1.319
g

1.249

_ I.195

'i I.154

li I.122
i I.096

I

4.408

3.856

3.496

3.242

3.048

2.897

2.773

2.677

2.592

2.521

"2.458

2.405

2.357

2.315

2.275

2.241

2.208

2.179

2.154

2.129

2.029

1.957

1.902

1.857

1,821

5.409

4.730

4.287

3.971

3.739

3.557

3.410

3.29e

3.189

3.102

3.028 1

2.962

2.906

2.855

2.807

2.768

2.729

2.693

2.663
2.632

2.516

2.431

2.365

2.313

2.269 *

0.99

7.334

6.411

5.811

5.389

5.075

4.828

4.633

4.472

4.336

4.224

4.124

4.038

3.961

3.893

3.832

3.776

3.727

3. 680

3.638

3.601

3.446

3.334

3.250
3.181

3.124

I 0.999
, i le

m

9.550*

8.348

7.566

7.014

6.603

6.284

6.032

5.826

5.651

5.507

5.374

5,268

5.I67

5.078

5.003

4.932

4.866

4.806

4.755

4.706

4.508

4.364

4.255

4.168

4.096

*Natrella, M. G., Experimental Statistics,
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2.11 The Scatter Factor Based on the Tolerance Interval

The "scatter factor" is a term which has been used to describe the varia-

bility in cycles to failure data for purposes of predicting a safe life. It is

analagous to a safety factor. For example, if N is the median cycles to failure

at a given stress level, a "design value" N =N/_ where _ is a scatter factor

associated with an appropriate tail probability e.

As an example, consider the problem described previous1-,, the data of _;_ich is

given in Table 2.9. The design value N is defined as the point above which at

=m (vleast P 9g_o (_=1%) of the values are expected to fall with confidence of y=95%.

That value has been established as N =7.23 thou-cycles.
(1

failure is

= 10T = 101.27

= 18.6 thou-cycles

The median cycles to

(2.39)

and thus the scatter factor is

= N/Nc, = 18.6/7.23

=2.58
(2.40)

l

_m

The general form of the scatter factor can be derived by substituting

the expressions of N and N_ in terms of the statistics for Y. Thus

" OY/[lo(Y-I ,yS)= N/N = l ] (2.41)

2.12 The Use of the Premiction Interval in Establishing a Design Value

Consieer a random variable Y which is normally distributed ,,:ith

mean and standard deviation u and _ (as the above example in Sec 2.10 and

2.11). A random sample of size n is taken, and the sample mean Y and sample

standard deviation,s are computed.
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It is required to make probability predictions about future observations.

Following is a derivation of the prediction interval and a discussion of how

it can be used to establish design values as well as provide statistics for

reliability analysis (see References 14 and 15).

Consider the distribution of (Yo - T) where Yo is a random variable

denoting a future observation and _ is the sample mean. Yo and T are normally

distributed and have mean and standard deviation of (u,_) and (u,_/v_) res-

pectively. Furthernx)re Yo and _ are independent in a probability sense because

Y is derived from the first n observations and Y corresponds to a future
o

observation. Hence (Yo " _) is normally distributed with mean zero and standard

deviation _' = __-_ (2.42)

Note that (n-1)s2/_ 2 has a ?.2 distribution with (n-l) degrees of freedom.

Thus it follows that Y - Y
0

, L

s//11÷ £
n

has a student's t distribution with (n-l) degrees of freedom. (14)

A rational method of establishing a design value can be based on a prediction

interval. Let YD denote the value below which we expect the next observation

to fall with probability _. Then

YD = _ - G(_,n)s (2.43)

where

i 1
G(c_,n) : t ;n_1 1 + -n

where t ,n_l is the Students t variate with n - l degrees of freedom at proba-

bility level

This is a simplified version of the Equivalent Prediction Interval concept

developed by Wirsching and Hsieh (15): See also Section 4.7.

2-41



|!'
W

The function G is shown in Fig. 2.12 for_ = .01 and .05. As n÷._, the t

variate approaches the standard normal z variate (also shown on Fig. 2.12);

the radial term approaches one. Thus G approache_ z a_ shnwn.

As an example, consider the data of Table 2.9; T= 1.27 and s = 0.127.

Find the lower I% prediction interval. For n = 22, G (.01, 22) = 2.57.

Thus

YD : 1.27 - 2.57 (.127)

= 0.943

The design value of cycles to failure N is given as,

ND - 100.943 -- 8.77 (I03 cycles)

The prediction interval also provides a mechanism for specifying the mean

and standard deviation for a reliability approach. Use of Tand s directly in

a reliability format may lead to significant errors for small sample sizes be-

cause _and s are only estimates of the populationuand _. The uncertainity

in the estimates can be accounted for by expanding the sample standard deviation

So

An alternative expression for the design value is

YD = T - Zm oo (2.44)

where ao is defined as the 'equivalent standard deviation". Comparing Eq 2.43

and 2.44, it follows that

where

Go = g(n,:)s (2.45)

g(n,m) = t ;n.l

= G(n,:) / z
O&

Values of G(n,_) can be established from Fig. 2.12., which is then divided by z

to _htlin oln.._)
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The value _ can be interpreced as the expanded standard deviation to
o

account for the fact that the estimates _" and s are random variables. For use

in reliability analysis one would state that Y has normal distribution with a

mean and standard deviation (T, Go)

For the data of Table 2.g and Figure 2.12

g(.01,22) = G(.OI,22)/Z.o l

= 2.57/2.33 = l.lO

Thus, Go = 1.10 (0.127) = 0.140

Thus we could state in a reliability format that Y-N(l.27, 0.140).

It is necessary in this approach to specify the "reference value" of _. As a

general recommendation, the value of m - O.Ol should provide reasonable results.

2.13 How to Establis.h a .Design Value: Summary Comments

Given a random sample of data, it is often required to specify a design

value on the safe side of that data. If the term is a "strength" varaible

(i.e. d_sign becomes dangerous if variable gets too small), then the desiqn

value should be on the left side. On the other hand, if the term is a "stress"

variable (i.e. design becomes dangerous if the variable gets too large) then

the design value should be on the right side. Thus YD = _(+ Ks.

There are a number of schemes currently used in industry to specify design

values for a "strength" variable. These methods are illustrated in Figure 2.13

using fatigue data presented in Table 2.]I. A summary of the methods and com-

puted values are presented in Table 2.12.

It is interesting to compare the design values with the actual population

from which the data is sampled. This particular sample of size n = lO had

values larger than average. Thus the lower ]% value (No. 5), based on the

as_Jmption that Uy = Y and _y = s and using normal probabilities, was too high.

2-44



I!

u

m

I

m
I

e,

Z-45

Li i

,. "_: ..... .. ,,_Z;_- _, .........



Table 2.11

Data for Example to Illustrate How Design Values

are Established

This data on Y was actually sampled from a normal distribution having mean

_y = 1.25 and standard deviatinn _y = 0.12.

Cycles_to Failure, Ni
Yi = l°gloNi (IOs Cycles)

I.298 19.86

I. 351 22.46

I. 328 21.30

I.312 20.54

I.095 12.46

I.415 25.98

I.364 23.14

1.232 17.07

l.ll2 12.95

l.292 19.58

Sample Mean, Y = 1.280

Sample Std. Dev., s = .I047
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Table 2.12

An Exampleof the Various Methods to Establish Design Values

(Basic Assumption: Y is Normally Distributed)

YD = Y " Ks

Method Value of K Design Value, YD

I. Mean 0 1.28

2. Smallest Value in Sample 1.095

3. Smallest Value Minus Reasonable

Distance (choice arbitrary)

4. Mean- Ks

e Lower I%; assumes that Uy =

and ey = s

6. Lower 1% Prediction Interval

±

.

K=2

K=3

2.33

2.90

3.98

Lower Tolerance Limit

= .95

= .1%

l.o5o

1.07
O. 966

l.036

0.976

0.863
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The messa_9 here is that the statistical distribution of T and s should be

accounted for in establishing the design value. The prediction interval

(No. 6) and tolerance interval (No. 7) are the only methods which do this.

In summary it is recommended that the prediction interval or tolerance

interval be used to define design values. The prediction interval can easily

be used to provide the data needed for reliability analysis. Tolerance

intervals are commonly used, but they tend to produce conservative values as

suggested in Fig. 2.13.
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Chapte: 3 ANALYSISOF STRAIN-LIFEDATA:THELEASTSQUARESLINE

3.1 Preliminary Considerations

Statistical analyses of data from a single random variable for the

purpose of establishing a design value was described in Chapter 2. Examples

of analyses of cycles to failure data at single stress levels were presented.

But generally, it is required to establish N as a function of S. Therefore,

tests are performed at various stress levels.

Typical fatigue data might consist Gf inelastic strain range versus N

cycles to failure as illustrated in Figure 3.1. It is necessary to

characterize this data for design purposes. Two basic methods are employed:

a. The common approach is to define a design curve on the safe (lower)

side of the data.

b. A statistical summary can be presented for a reliability analysis

or probabilistic design approach.

A key to strain-life data analysis is the determination of the least

squares line, an estimate of the median value of N for a given strain (or

stress) level. This chapter discusses the least squares line and some of

its characteristics. Chapters 5 and 6 then show how to establish design

values from strain-life data.

3.2 The Least Squares Line (Median Curve Through Strain-Life Dats)

3.2.1 Introduction

Methods for analyzing strain-life Ac-N (or stress-life, S-N) data are

discussed in this chapter and in the next two. The goal of such data

analysis is to .....vide a characterization of the A_-N relationship in a

form suitable for design purposes. General references on the least

squares method include References l, 2 and 3.
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3.2.2 Median Life Curve

Consider a constant amplitude strain controlled fatigue test in which

pairs of data (_i' Ni) i=l, n are collected. Ni are the cycles to failure

associated with strain range .L-_i, and n is the sample size. ±_ is the

independent (or controlled) variable and N is the dependent variable. Data

from a hypothetical test are shown in Fig. 3.1 plotted on log-log paper.

Fletnods of basic linear model analysis are typically used to analyze

fatigue data, and these methods will be used herein to describe life

relationships.

Consider first a log transformation of variables. Let

Y=log N X=log(A¢ ). (3.2)

Thus X is the independent variable, Y is the dependent variable.

Clearly there is no functional relationship between Y and X, but there

does seem to be some kind of relation. It will be assumed that the data

(e.g. Fig. 3.]) is a random sample from the following mode]

Y(x)=Yo(X) +_ (3.3)

in which_ is a normally distributed random variable with mean equal to zero

and standard deviation equal to _ and where

Yo(X) = a + bx (3.4)

where a and b are constants. Thus for a specified X, Y is a random variable

normally distributed having mean and standard deviation

E(YI X) = y = a + bx (3.5)
o

(YI x) = _ (3.6)

Note the assumption that _ is a constant, not a function of X. The line

Y
o = a + bx, being the mean of Y, will pass through "the "center" of the data.
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• , ' ' ,._i11 b: logr, trmalBecause Y _s _ormally dis*_rib'_ted, N _g_Ven -_,. . .

Thus the median of N, denoted as N, is given by Yo:log N.

Original coordinates, the Y line can be written as

_c : CN_

In terms of the

(3.7a)

in which it follows from the above definitions that

l
a = -- log C b : I/_

3.2.3 The Least Squares Line

(3.7b)

The parameters a and b (and thus C andc ) and _ are not known in advance

and must be estimated from the data (a¢i' Ni)' i:l,n. Equation 3.2 is used

to translate the data into (Xi, Yi ) i-l,n.

Using the method of least squares, a, b, and _ _re estimated by a, _,

and s respectively (3),

: _(X i - X-)(Y - Y-)/ _ (Xi - _-)2 (3.8)
i-l i i:l

a : g- (3.9)

IP

b

s2 1
= n-1-22_=l[Yi - (_ + bXi)]2 (3.10)

wnere x and Y are the sample means of X and Y respectively. Because each Yi

is a random variable, the estimates a, b, and s are also random variables.

The "best fit" line

A

Y:a+bX

is called the least squares line.

^

Y is the estimate of Yo'

(3.11)

.e. the mean of Y

given X.

As an example, the PP strainrange data for AIS! 316 presented by

Saltsman and Halford (4), and shown in Fig. 3.2, will be analyzed. This

data is presented in Table 3.1, along with statistics associated with this

PP strainranre is tonsile n!_st_cit,, reversed by connrossive plasticity;

no creep. 3-_
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Strain Range

,, ,,i

•00424

.00105

.03508

.03496

.00466

• 02066

.02360

Table 3.1

Statistical Analysis of AISI 316 PP Data

[after Saltsman and Halford (4)]

Sample Size n=7

Cycles to Failure

Ni

1700

35600

120

68

2333

116

146

Xi=l°g(A_)i

-2.373

-2.979

-1.455

-1.564

-2.332

-1.685

-1.627

i , i

Y.=log N,
1 1

3.230

4.551

2.079

1.832

3.368

2.064

2.164

Sample Mean of X

: -l .986

Estimate of a

A

a = -.6530

0thel, Statistics

s = 0.1427

Z x2 : 29.663
i

l x 2 2
s_ - _ Z i - (i}

sX = 0.5416

:, .2934

Sample Meat of Y

Y = 2.746

Estimate of b

A

b = -l.711
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Equations 3.8, 3.g and 3.!0 can be used to obtain a, b, and s, the

estimates of a, b, and _, respectively.

a = -0.6530 b = -I.7108 s = 0.1427

Least squares estimators _ and C are obtained by inverting Equation 3.7b and

(3.12)

solving for _ and C.

A

I/b ^ -a/b: : 0.5845 c : I0 : .4152
a A

Least squares estimators a and b are obtained from Equation 3.7b

(3.13)

A

: I/b : 0.5845

-alb
C : 10 = .4152

The least squares line, A¢ = CN¢ is plotted on Fig. 3.2.

esti_te of the median N.

(3.13)

A

N is defined as the

Note that (a) Y given X is normal and (b) the least squares line is the

estimate of the mean of YIX.* Therefore, it follows that (a) NIA_ is lognormal

and (b) the least squares line, N, is the estimate of the median of NIA¢.

3.2.4 An Alternate Form

The form of the A¢-N relationship given above is most commonly used in

SRP literature. However, for probabilistic design purposes, it is more

convenient to express the "Y line" (Equation 3.7) as
O

N = K(A¢) m (3.14)

Comparing Equations 3.7 and 3.14 the constants K and m in terms of C and

are

K = C"I/_ m = I/{ (3.15)

The transformation to linear form involves the substitutions,

Y - IogAc X =log K a : log K b : m (3:16)

The least squares estimates of K and m are
^

K =lO a m = b (3.17)

YIX means the random variable Y _a specific value of the random variable X.
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For the example of Fig. 3.2

A

K = .2223

The estimate of the median curve is

N = 0.222(_) "I'71

m : -I .7108 (3.18)

(3.19)

3.3 Statistical Distribution of the Least Squares Estimators, _ and

^ A

The estimators a and b will have a bivariate normal distribution.

expected values are,

E(a) : a E(b) : b

and the covariance matrix is

The

(3.20)

C(_,b')= (_'/n)F+(_/Sx)2

L_(_/s_)

where Z is the sample mean of X and

l/s_

(3.21)

s2 : 1 .R)2x _ Z(xi (3.22)

-2

EXAMPLE: Consider the PP strainrange data of Saltsman and Halford (4).

Substituting appropriate values from Table 3.1 into Equation 3.21, including
^_

the assu_tion that s2=_z,it follows that an estimate of C(a,b) is

C(a,b) = .042 0.02 (3.23)

.o2o o.oI_

The variance of _ and b are respectively 0.042 and 0.010 (standard deviations

0.205 and 0.100). The covariance of a and b of 0.020 indicates that a and

are correlated. The correlation coefficient
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F) =

Coy(a,
C_^CI_
a b

(3.24)

0.020

- (.205)(0.--_ : 0.976 (;.z5)

There exists a high degree or correlation between a and 6. This

dependency leads to operational difficulties when we attempt to present

fatigue data summaries in a format useful for designers. Practical

representations of these design factors will be the subject of Chapter 4.

3.4 Confidence Intervals for the Parameters and the Leas.t Squares Line

Because _ and b are estimates of a and b, they are random variables.

For example, suppose that a sample of size n=7 of AISI 316 PP data were

collected in addition to that of Fig. 3.2. Because it is a random sample,

a different value of a and 5 and a different least squares line will be

^

obtained. Indeed each time a sample of size n is chosen, a different a, _b

A

and therefore Y will result. This point is important because the uncer-
o

tainty in a and b has a significant effect on risk estimates.

The consequences of having a and b as correlated random variables is

reflected in the character of the confidence intervals of the least squares

line. Summarized in this section is how to compute confidence intervals

for K and m as well as for Yo(X).

The AISl 316 PP data given in Fig. 3.2 and Table 3.1 is used as an

example. Table 3.1 summarizes basic statistical analyses.

The I-_ confidence limits for a and b are (3)

(For a) a ÷ t _i R2"+
e/2;n-2 - _sv

z,

(For b) b + t
_,/2;n-2 "=/(/-nSX)

3-9
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is the lO0 _/2 percentage point of Student's distribution
where t /2;n_ 2

with n-2 degrees of freedom and using the data of Table 3.1, the 99%

confidence limits (_ = .01) are computed as follo_s

t.005,5 : 4.032

(For a) -.6530 + (4"032)('1427)II +(71"986)2_7/ )
" - (_2934)

= -.6530 + .8265
o

(-I.479, +0.1735)

-l.711 + (4.032)(.1427)/_r{.5416)]
m

= -l.71l+ .401
m

(For b)

(3.28)

(-2.III, -I .310) (3.29)

The 99% confidence limits can be described by the probability statement,

P(-1.479 < a < 0.1735) = .99 (3.30)

P(-2.111 < a < -l.310) = .99 (3.31)

Because K and m are monotonic functions of a and b, the confidence limits

can be evaluated by direct substitution. Results are given in Table 3.2.

TabTe 3.2

Confidence Limits for K and m (AISI 316 PP Data)
ii n, • ,., .

Least Sauares Estimate 99% Confidence Limits

Lower Upper
i

m

k

-l.711 -2.111 -l.310

0.223 .0331 l.491
ii i .j . i i i m

Because much of the work in SRP has used the form of A_=C(At)K it is

of interest to consider the confidence limits of C and _ for the AISI 316

PP data. Results are summarized in Table 3.3.

Confidence limits on Yo' the mean of Y given X, are computed using
m

Yo + t 2;nm 2 -jsIl+ _x-X 2 (3.32)
X
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For the AISI 316 PP strain data of Fig. 3.2 and Table 3.1, the 99%con-

fidence intervals on Y are plotted in Fig. 3.3.
0

Table 3.3

Confidence Limits for _ and c (AISI 316 PP Data)

Least Squares Estimate 99% Confidence Limits
Lower Upper

-.585 -.437 -.763

C .415 .0743 1.208

Values obtained fromEquation 3.13 by noting that the correlation
coefficient between _ and B p:-l. Upper limit on a was combined

wiC_ lower on b and vice versa.

The purpose of the plot of Fig. 3.3 is to illustrate the fact that when

dealing with a phenomena that has as much scatter as fatigue, sample sizes

larger than n=7 are required for a reliable prediction of the least squares

line. Assuming that identical statistics (a, b, s,_,vrs x) resulted from

experiments having different sample sizes, an illustration of the effect

of sample size can be provided. Fig. 3.4 shows 99% confidence intervals

for Yo for n=7, 15 and 30.

For design purposes however, it is customary not to use the least

squares curve to characterize the data, but rather a curve on the safe

(lower) side of the data. This approach will be pursued in Chapter 4.

3-11
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CHAPTER 4 STRAIN-LIFE DATA ANALYSIS: GENERAL CONSIDERATIONS

_.I General Considerations for Design

The general problem of analysis of fatigue data is illustrated by Figure

4.1. The data typically will be curved even on a log-log plot and will have

a scatter (standard deviation of N given _, denoted as N!_) which increases

with smaller bE.

A median curve can be established through the data, typically using a

least squares method. But the median curve only defines the 50% point. A

low risk design would require definition of a design curve on the _afe side

of the data as shown in Figure 4.1.

The design curve of Figure 4.1, denoted as ND, is defined as a curve

below which one would expect the next data point to fall with probability _.

Given that N is a random variable denoting cycles to failure, ND can be

defined by the probability statement

PEN<NDIA ]= (4.1)

for any _. This left tail area, _, is the estimate of the fraction of

points that would be expected to fall below ND. It can also be thought of

as a "risk level" although it would be equal to the probabillty of failure

only in the case where all other design factors, including strain history,

were exactly known and the factor of safety equal one. In practice,

the designer must select the value of _. Typical values which have

been used range from _ = 0.1% to 5%.
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Figure 4.1

An Illustration of a Design Curve Based on Risk Level

STRAIN, 4¢

(or STRESS)

(log scale)

(log scale)

CYCLES TO FAILURE, N
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An approach using methods of modern probabilistic design theory does

not require a design curve. However statistics of the design parameters

must be given. For example, it will be shown later for a probabilistic

fatigue design approach that required information from the linear Ac-N

model, N=K(_c) m includes the value of mand the median and coefficient of

variation of K.

In summary, two approaches to fatigue design can be used. Each requires

a different way of characterizing Ac-N data but both require statistical

analyses.

I. A deterministic approach in which a design curve (AE-N) is specified.

All other design factors are treated as deterministic or constant.

2. A probabilistic approach in which statistics of the model parameters

are stated. All design factors are treated as random variables.

Both methods are described herein. This chapter summarizes the analysis

for the simple linear model case. The following chapter explores this

problem for the more difficult non-linear problem illustrated in Figure 4.1

in which the scatter is a function of strain level.

4.2 Definition of a Failure Trajectory

The concept of a failure trajectory has been very useful in analyzing

fatigue data for design purposes. In Figure 4.2, the star represents a specimen

which has failed. The dashed lines (failure trajectories) are drawn through

the point according to some predefined rule. Typically in this case the

failure trajectories are parallel to the median curve. It is argued that the

curve defines the cycles to failure of that specimen if it had been tested at

a different stress level. For example, a specimen which is "weak" at a high

stress level would also be weak at a low stress level,

4-3
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STRAIN, A_

(or STRESS)

Figure 4.2

Assumed Relationship Between the Distributions of NIAc and A_/N

i
, \ /," / PDF of NIAc

\\ \\ I \_PDF of Aeltl

/ +
DESIGI! CURVE" _ \'_ /." "_.

_A_eLURsEaTrR_rJe_CrTeOsRe:ESsthe fai Iure

point, but had the specimen been
tested at another level, it would

have failed on the dashed line)

CYCLES TO FAILURE, N

>
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The assumption that failure trajectories accurately describe material be-

havior leads to many useful statistical descriptions that otherwise would not

be possible. For example we can construct the distribution of _ given N as

shown in Figure 4.2. The design curve defines the lower _% of failures in both

directions. This statement cannot be made without the failure trajectory assump-

tion.

As will be demonstrated in the following sections, not always will this

concept be employed, but often it can be quite useful.

4.3 Linear Life Relationships

It is assumed in this chapter that the strain-life relationship will be

described by the basic linear model (Equation 3.3)

Y : a + bx + (S (4.2)

where 6 is a random variable having mean value of zero and standard deviation

o. Let

Y=log N x=log S a=log K m=b (4.3)

Define the random variable Ko by the relation

(4.4)
= log Ko

Combining Equations 4.2, 4.3, and 4.4 yields,

N = KoK(AE_ (4.5)
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Because _ ~ N(O,a), it foliows that K is a lognorma!ly distributed
o

random variable. The median and coefficient of variatio_ of Ko are for base

10 logs,

_o : I CK = vtlO(_2/0"434) - I (4.6)
0

(See Appendix l for a description of the lognormal distribution.)

Note that because Ko is a random variable, N is a random variable.
Q

median life, N is Equation 4.5 with the median value of Ko; Ko=l. Thus

The

N = K(AE)m (4.7)

In chapter 3 we saw how K ar,d m are estimated by the least squares

estimators 'Kand _ and that the least squares line

A

= R(A_) m (4.8)

is an estimate of the median curve N.

For example in the strainrange partitioning (SRP) method, there are four

such strain-life curves depending upon the strain type. See Manson, Hal-

ford, and Hirschberg (I), or Saltsman and Halford (2) for details on SRP.

Nop=G(A )Y[

Ncp = H(a_)n I

I

Npc = K(Z_c)P ]

I

Ncc = M(Ac) _ I
I

tensile plasticity, compressive plasticity

tensile creep, compressive plasticity

tensile plasticity, compressive creep

tensile creep, compressive creep

Least squares analysis in each of the four cases can be performed as

described above. The median curve for each is simply the relationship with

the least squares estimators.
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4.4 Uncertainties in the Linear Model

Upon employing the basic linear model with the least squares line for

design, it is important to note that uncertainties stem from four sources (3)

I. Basic scatter inherent in the material behavior, as described by

2. The sample standard deviation, s, and estimate of _, is a random

variable.

A

3. The estimate of a is a, a random variable.

4. The estimate of b is b, a random variable and is correlated to a.

As the sample size n becomes large, a_-_a,l_-_band Yo÷Yo , and s approaches

_. For all practical purposes a, b and s could be treated as constants fcr

large n (typically the assumption would be reasonable for n>50). However,

because of the expense associated with fatigue testing, sample sizes will

generally be small. Therefore in general it is necessary to give full con-

sideration to statistical distributions of these estimators.

Uncertainties in the estimators significantly complicate the develop-

ment of a model suitable for design purposes. In the case that the data

can be described by a linear model, the equivalent prediction interval

described in this chapter provides an approximate solution.

This chapter summarizes statistical methods of analysis commonly used

for linear data and provides commentary regarding the performance of each.

4.5 Lower 2a or 3_ Limits

It is common practice to establish a design curve as a line which is

parallel to the median Ac-N curve and which lies a distance typically 2 or

3o to the left of the median curve. The value _ is taken to be equal to

the sample standard deviation, s of Equation 3.10. Figure 4.3 illustrates

a 2_ curve, denoted as N2o.
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Use of such a criterion implies a risk level c_ as follows:

Distance to the left of the Median

3_

Implied risk level,

0.0227

O.00135

Note that _=standard deviation of Y=log N

This approach to a design curve can produce inconsistent levels of risk.

Some of the pitfalls are illustrated in the following discussion and example.

On the basis of the available data, the statistical distribution

of the next observation Y is described using the concept of prediction

interval. The distribution of YIX is Student's t with n-2 degrees of

freedom_ To compute probabilities of Y for a given X, the lO0 m% lower

prediction interval can be used (7,8)

= PCY(x) < (a + ix) - tI + ___r 2
- -_;n-2 s n nSX_

4.10

In Equations 4.10, s accounts for the scatter inherent in the physical

phenomena, the term with the radical sign accounts for uncertainty in a

and b, and the use of the Student's t distribution (rather than the normal)

accounts for the uncertainty in s.

As an example, letting _ = 0.227, the same risk as implied by 2_ curve

results in the No curve as shown in Figure 4.3. This curve given by

^ +n x-x

log N = Y = tI s _ +-_;n-2 n

_.T e.g. See Reference 3 or 8.

4.11
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is obtained from Equation 4.I0. The N curve is interpreted as follows.

On the basis of the available data, there is 2.27% chance that the next

point (Y,X) selected would fall belo_v this curve. This illustration demon-

strates that (a) the distribution of YIX is a function of X, (b) because

N lies below the use of the 2_ criterion results in risks t,Jhich areN2_

higher than advertised.

The 3o criterion is illustrate_ in Figure 4.4. The curve N is for

_=0.00135. Again we see a significant difference between the N3o curve

which implies a risk of _, and the curve N which actually defines _.

A

However, as n* ®, a * a, b ÷ b, s ÷ o, the estimators being con-

sistent. Moreover, tl.e;n. 2 ÷ z and the radical term of Equation 4.11

+ I. Therefore, for large n, N° approaches N2o. In summary, the differ-

ence in N_ and N2o of Fimure_ 4.3 (and M_ and N3o of Fiqure. 4.4) is due to

the uncertainty in the estimators.

Another way of looking at the problem is to consider the actual risk

level _ as a function of sample size n for the 2o and 3o curves. The

curves shown in Figure 4.5 illustrate that the actual risk level depends

upon the sample size and can substantially differ from the implied risk

level.

In summary, a 20 or 30 criterion can produce consistent probability

levels in _-N data only if sample sizes are sufficiently large. As a rule

of thumb, a large sample would typically be n > 50. For smaller samples,

due consideration should be given to the fact that a, b and s are random

variables. Proposed in Sections 4.7 and 4.8 are models for consistent

description of Z_-N data.
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4.6 Implied Risk in Fatigue Design Curves of the ASr_E
Boiler and Pressure Vessel Code

Fatigue evaluation methods for pressure vessels are included in Section

Ill, Division I and Section VIII, Division 2 of the ASME Boiler and Pressure

Vessel Code (4,5). Both sections contain fatigue design curves.

The fatigue design curves were developed by applying factors of 2 on the

median strain range and 20 on the median life (6)-

The median curve is the Langer model (7), having the form

S = BN-I/2 + S (4.12)
e

where S is defined as

S = 1/2(Ac)E (4.13)

1
D

E being the elastic modulus. K and S are the parameters to be determined
e

from the data. Se can be interpreted as the endurance limit. The design

curve is actually _ lower bound envelope. See Figure 4.6. Past experience

indicates that these factors satisfactorily account for possible size effects,

data scatter, surface-finish influences, moderate environmental effects and

time history effects on fatigue resistance*.

The factor of 20 on life dominates the design curve for cycle lives

typically less than 20,000 (6) as suggested by Figure 4.6. It is of interest

to examine the actual risk implied by such a criterion.

Figure 4.7 illustrates how the design curve, ND and risk level a are

related. Note that _ depends on the amount of scatter in N, but ND does nct.

For a narrow distribution of NI._E, _ is small and vice versa.

The relationship between _ and the coefficient of variation of N,

denoted as CN, can be derived as follows

For an interesting commentary on the AS_IE fatigue curves, see the article

"Safety Factors in Fatigue Design; Arbitrary or Rational", by J.T. Fong

and J.H. Smith in Critical Issues in Materials and Mechanical Engineering,
ASME, 1981.
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Figure 4.7
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Assuming that N has a lognormal distribution {see Appendix I), it follows

that

:_ : ,_(-log(20)l_log N) t4.15)

where ,,.

/
: d CN2)alog N 0.¢34 log(l + (4.16)

and where ¢(.) is the standard normal distribution function.

In Figure 4.8 the risk level _ is plotted as a function of CN for values

of CN commonly observed in fatigue test data. Smooth specimen low cycle data

typically have CN from 0.30 to 0.70, but welded joint data for example can

have values of CN as high as 1.5.

In summary, the plot of Figure 4.8 clearly shows that application of the

"factor of 20 on life" curve leads to inconsistent levels of risk.

4.7 The Tolerance Interval Used to Establish

a Desi_nSLN Curve

Examples above illustrated how certain rules for drawing design curves

can lead to inconsistent levels of risk between data sets. Two methods are

presented herein For constructing, design curves which are statistically

consistent. They are a) the tolerance interval method described in this

section, and b) the equivalent prediction interval (EPI) described in

Section 4.8. The EPI method can also provide appropriate statistics for

reliability analysis.
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The tole,'ance limit is established For a single variable as described

in Chapter 2. However, it may be possible to use the tolerance limit to

define a design curve from SN data. It is necessary, however, to assume

the existence of failure trajectories, l_nes parallel to

the least squares line are illustrated in Figure 4.9. Thus SN data can be

translated into an "equivalent" random sample of _ for any S. The standard

deviation of Y = log N is constant, with the mean of Y defined by the least

squares line.

The tolerance limit at any stress level will lie to the left of the

least squares line Y, a distance of K s. Thus the design curve is

A

ND = Y - K ,yS (4.17)

An illustration of the design curve based on a tolerance interval is shown in

Figure 4.10.

The PP data of Reference 2 is used to provide ar example of a design

curve based on the tolerance interval. The data is show,, in Figure 4.11.

Assume that the decision has been made to define the design curve as the line

below which no more than _=1% of the population is expected to fall with

confidence y=95_; n:7.

The scatter factor is

From Table 2.10 K =4.64 The design curve is

Y - K s : Y - 4.64(0.1427)
_,¥

: Y - 0.662 (4.18)

: loK_,y s , lO0-662

:4.59 (4.19)

In summary, the concept of the tolerance interval can be used to establish

rational and consistent design SN curves. It is required to assume that faiiure

trajectories define material behavior. Moreover, the tolerance interval does

4-18
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ua _aDesign Curve for SN _,_

Based on Tolerance Interval

Strain :

or

Stress S

\ Squares Line

/_.k\ \ ,
Design Curve Based ._

on Tolerance Inter -NL N
val Y - K s

CI,y N

\

Factor

N _ oKa,ys
"_D- 1

Cycles to Failure, N

_-20



A

L
O

4"

"r"

.l,,a

r_
m_J

...._

,m,
f,,,,, e,-

op,.

a01

o

f_

.,i,a

u

f,,,,.

o
I,--

o

ulP

r__

Z

c._
Z
I,--,--4

G2
C_

Cr3

r...,j
o_

E-4

p,,,,,.
cx,,i

0

II II

c

_.I

4

.?,,.. Ii
Q

"

¢_

,-=.

I---

z

,, 1,==

r, r.':

0..

0
(..4

CO

_.OI

4-21



not directly provide the information for a probabilistic design approach.

These restrictions do not apply to the use of the equivalent prediction in-

terval described in the next section.

_.8 A Consistent Method for Characterizinq Linear Fatigue
Data - The Equivalent Prediction Interval (EPI)

The goal of the analysis described in this section is to develop a procedure

of fatigue data analysis having the following properties: (a) scatter in data is

represented, (b) consideration given to the statistical distributions of the

estimators, (c) probability estimates from the model are consistent and accurate.

(d) appropriate statistics for a probabilistic design analysis are provided and

(e) the model is easy to use. The equivalent prediction interval proposed herein

satisfies these requirements.

Assume that the strain-life relationship is of the form

N : K(AE) m (4.20)

For a given _, K and m (and therefore N) are random variables by virtue of the

scatter in the data. The value of K in Equation 4.20 is now equivalent to KoK

in Equation 4.5.

l •

In a design procedure, two strategies exist.

A deterministic approach in which a "design curve" is established on the

safe side of the data. Assume that YIX is normal with standard

deviation of s. For example, to establish a line below which only I% of

the points would be expected to fall, let _=.Ol and z =2.33 from normal

tables. The "design curve" is given as

log ND : Y - Zl_ s (4.21)
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i

ND is shown in Figure 4.12 (see also Figure 4. ). Use of this as a

design curve is subject to the pitfalls as described in Section 4.5

and Section 4.6.

But this approach insures a lower I% bound only in the limit as

n-_. For small n, typical of fatigue tests, this method is uncon-

servative as described below.

A

2. A probabilistic approach in whici'_a a,nd b (and therefore m and K) are

treated as random variables. Stand_.'d probabilistic design methods are

employed to insure structural integrity. But a and b are bivariate

normal (3), and therefore m and K appear in the failure function as

correlated random variables. The problem becomes complicated.

The distribution of a future observation, defined by the prediction

interval is described in Section 4.5. The lower I% prediction interval is

also shown in Figure 4.12. Again, we see that use of the ND curve is mis-

leading in terms of the implied risk.

It would be difficult to incorporate the notion of a curved prediction

interval into a design algorithm. However, it is observed that the equal

p obability N° curve is relatively flat. This suggests that prediction

: cervals can be approximated as straight lines, called herein, equivalent

prediction intervals, and abbreviated EPI.

Development of the EPI concept is described by Wirsching and Hseih

(8) and sb_marized in following discussions.

Define an equivalent constant standard deviation of Y as

go : s g(n,_) (4.22)
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where

g(n,a) : exp[A(_){In n

A(_) = 1.56[½ In C2-_] I'12

B(e) = 3.32 - 1.7_

(4.23)

(4.24)

6 < n < 50; O.01 < e < 0.15

Basically the idea is to use the model of Equation 4.2 , but with an expanded

value of s {the value of oo defined below) so that the ND curve is shifted to

the left to match the N curve.

g(n,_) > l is in essence, an adjustment factor to s to account for the fact that

there is uncertainty in the estimates of a and b and s. For convenience, a

chart of g(n,_) is given in Figure 4.13.

I •

2.

The model, suggested by the above discussion, is as follows:

Let m : b be a constant.

Assume that all of the uncertainty due to scatter in the data is accounted

for in a (and therefore K) by considering the y intercept as a random

variable.

3. Therefore, let the empirical relationship be

A

Y = a + bx (4.25)
0

where ao has a normal distribution with mean a and standard deviation ao.

The consequences of such a model are

I. YIX has a normal distribution. (Thus N given A_ has a 1ognor_al distri-

e

bution )

A

The mean value of YIX is a + bx.

N -- A_)m

(Thus the estimate of the median of N is

3. The standard deviation of YIX is oo (and is not a function of X).

4. a = log K is normal and K is lognormal. The median K and coefficient of
o

variation CK nf K can be obtained from the lognormal (base lO) forms
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L

= 10_ (4°26)

/

,' 2/.434)
CK : /10 (_o - 1 (4.27)

EXAMPLE Given the fatigue data (n = 7) as illustrated in Figure 4.12

define a design S-N line which is estimated tc be on the safe side

of 99% of the data. This line is to be the :_ = 0.01 EPI. The basic data

is summarized in Table 3.1. The estimators are presented in Figure 4.12.

Using Equation 4.23 with n = 7, _ = 0,01

A(_) : 4.64 B(_) : 3.30

Thus, the equivalent standard deviation is,

g(n,a) = 1.67 (4.28)

0"0= g S

= (1.67)(0.143) = 0.239

(4.29)

_t
Design Curve The I% EPI is given as N , where

logN =Y-z_ o (4.30)

This EPI could be used as the design curve in the conventional approach.

The EPI is shown in Figure 4.14 along with the prediction interval N which the

EPI approximates.

Figure 4.14 suggests that the EPI is a reasonable approximation to N_ the

prediction interval. As the sample size becomes larger, N becomes flatter and

the EPI becomes an even better approximation [7].

Probabilistic Format The data will be analyzed in a format which is convenient

for probabilistic design procedures.

The fatigue equation will contain m and K. Using the method described

above, m is a constant and equal to

A

m : b : -1.71 (4.31)
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Vwill be lognormal with a median value of (Equation 4.26)

: I0 -'6530 : .222 (4.32)

Kwill have a coefficient of variation of (Equation 4.33) based on _ = 0.01

l
C K=,ilO ('239)2/'434 - 1 : 0.595 (4.33)

where ,:_ was obtained from Equation 4.27.
o

Ir summary, Chapter 4 discussed the problem of establishing a design

curve and/or appropriate statistics for the case where strain-life data has

a linear trend (on a log-log basis) and uniform scatter. Analysis associated

with more complicated strain life models are treated in Chapter 5.

4.9
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Chapter 5 STRAIN-LIFEDATAANALYSIS;SOMEADVANCEDTOPICS

5.1 Preliminary Remarks

Chapter 4 discussed how to establishe a design curve, and provide

parameters for a probabilistic design format for strain-life data which

a linear trend throughout the range of interest, and has a constant standard

deviation of log N given log S (_log _)" This chapter will describe analysis

procedures for other types of SN data.

I. The SN data has a linear trend, but scatter increases with decreasing

stress (or strain)

2. The general strain life relationship which is now commonly used in design

(1), i.e., for the local strain approach

3. A distribution of stress given life N, in the high cycle range where a

stress endurance limit is assumed

5.2 Linear SN Curve With Variable Scatter

Consider the fatigue data of Figure 5.1. Visual examination leads one to

the conclusion that while there is a linear trend to the data, it does appear

that the scatter in cycles to failure N increases with decreasing strain

(or stress). Data having this characteristic is said to be "heteroscedastic"

This behavior is fairly common in fatigue data.

The following analysis procedure is proposed to characterize the data for

design purposes. The data of Figure 5.1 is used as an example.

I. It is assumed that (a) the data follows a linear relationship, (b) the

distribution of Y = log N given X = log a_ is normal. The least squares

A .-. A

line Y = a + bx, is obtained from the data (Xi,Yi), i : l,n. It is an

estimate of the mean of Y for a given X and therefore the median of N

for a given _c. The least squares line is shown in Figure 5.2.
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2. Define the deviations as di = (Y - Yi ). Compute,

t

,/'I__]__? d 2
s : n-2 i Z-I i

(5.i)

as an estimate of _avg' the average standard deviation of Y given X. For

the data of Figure 5.1, s = 0.194.

3. Assume that _,dl, the absolute value of the deviation, has a linear rela-

tionship with X. Determine the least squares line Id(x)i : c + eX.

This is shown on Figure 5.3.

4. Assume that the standard deviation of Y given X has a linear relationship

to X. It is denoted as _(x). The estimate of _(x) is denoted as s(x).

Assume that s(x) is proportional to Id(x)l. The scale of s(x) is esta-

blished by defining s (the estimate of _avg) as the value of s(x) corres-

ponding to the mean value of X, denoted as _r. In the example _r = -2.05.

Both Xand s are shown in Figure 5.3. The scale of s(x) is established

by noting that Id(x)I and s(x) are zero at the same point.

To use this information for design, several of the techniques described

previously can be used. As examples,

I.

o

design curve defined as the mean minus M standard deviations can be

easily constructed from Figure 5.3. The M - 3 curve shown in Figure 5.2

illustrates the heteroscedastic nature of the data

Assume that fatigue behavior can be described by failure trajectories

which are flared from the least squares line in proportion to Id(x)I. An

example is shown in Figure 5.4. Then, for example, a lower tolerance

limit can be used as a design curve as shown. The values of P = O.Ol and

¥ = 0.95 are those of the "A - values" in MIL-HDBK-5.
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i .

3. For a reliability format, it is necessary to have the least squares

line, and the standard deviation. The standard deviation has the

functional form,

a(x) : A + BX (5.2)

For example, the estimate of _(x) is, from Figure 5.3,

s(x) = -0.0884 - 0.1377x (5.3)

This representation of _(x) significantly complicates reliability analysis.

However, a simplification using an equivalent standard deviation co can be made.

Assume that a variable amplitude loading, consisting of k discrete strain ampli-

tude levels, _i' i = l,k are applied. The fraction of time that _i is applied

is known to be fi" An average, or equivalent standard deviation can be defined

as a weighted average, k

= Zf_(X i) (5.4)
_o i=l"

where Xi = log _i" But the right hand side is, by definition, the expected value

of _(x), denoted as E[_(x)]. Substituting Equation 5.2,

ao : E[_(x)] : E[A + BX]

_o : A + B.E[log _] (5.5)

To find E[log _] it is necessary to evaluate

k

E[log _] : Z f_log _i
i=l '

(,5.6)
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and if the strain amplitude levels are continuous with probability density

function f(_), then

E[log a] = I (log c)f(_)dE (5.7)
_O

In summary, the value of co as computed by Equation 5.5 can be used in a
A

reliability analysis. The least squares, NSm = K defines the median value of

K, and the coefficient of variation of K is, (using lognormal relationships)

(s.8)

5.3 Statistical Analxsis of the General Strain-Life Relationships

Fatigue tests can include cyclic plasticity and accompanying low cycle

fatigue. A stable hysteresis loop is recorded for each specimen as shown in

Figure 5.5. The figure also defines strain types. Strain reversals to failure,

2N, is recorded for each specimen. The general strain life relationship is

commonly used to describe fatigue strength for the modern local strain approach

to fatigue. General references include References 2 and 3.

An example is presented in this discussion. The data as well as the

analyses are given in Table 5.1.

The Coffin-Manson rule for the plastic strain-life relationship is

Cpa = ___ = _(2N) c (5.9)

The empirical constants _ (fatigue ductility coefficient) and c (fatigue

ductility exponent) are established by a least squares line through the data

as illustrated in Figure 5.6.
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Figure 5.5

Stable Hysteresis Loop

!

E

A_ : total strain range

AEp = plastic strain range

_pa = A_p/2 = plastic strain amplitude

Ace = elastic strain range

_ea = _ame = elastic strain amplitude
2
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Figure 5.6

Plastic Strain-Life Curve for Example Problem
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\
Least Squares Line

_pa : "491(2N)-'540
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The Basquin equation for the elastic strain-life relationship is,(4)

L_e _ )b_ea : T : (21_ (5.10)

Again, the empirical constants S'f and b are established by a least squares

method. See Figure 5.7.

The total strain life curve is obtained by adding the elastic and plastic

strains.

Ea _ea pa

I

= of

T (2N)b + ef (2N)c

In this example, the total strain-life curve is shown on Figure 5.8.

The "standard deviations" in Table 5.1 were computed as follows.
A

A

a failure point (ei' Ni)" Let Xi = lOglOE i and Xi = loglo_ i where ei is the

value strain from the least squares line at Ni. Let

(B.ll)

Consider

di = xi - x. (5.12)I

The sample standard deviation, an estimate of Jlog c' is given as

[n__2 n 21 1/2s -- :z (5.13)i 1di

Values of s, so computed, are given in Table 5.1, not only for the plastic and

elastic strain curves, but also for the total strain curve.

For design purposes, it may be required to define a design curve on the

safe (lower) side of the data and/or specify statistics of the parameters. The

latter would be necessary if a complete fatigue reliability analysis is to be

performed.

At this time only preliminary studies of the statistical character of
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Elastic Strain-Life Curve for Example Problem
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strain-life data have been completed. Analyses of 14 sets of fatigue data

of steels and nickel base superalloys of various types have suggested the

%llowing conclusions.

I. There is no statistical relationship between the plastic and elastic

strain amplitude for a failed specimen. One might suspect one of

two possibilities (a) a specimen having high ductility would have

low strength,.., good plastic strength, poor elastic strength, or

(b) a defect causes poor strength in both plastic and elastic strain.

No evidence in these preliminary studies suggests either phenomena

is dominant.

2. Scatter in cycle life (N) increases with decreasing strain level (ma).

This behavior is typical of fatigue data.

3. Scatter in fatigue strength (__a) decreases with increasing life (N).

Experimentalists have suggested to the author that t)_e stmndard devia-

tion of log _a is constant (not a function of N). No evidence that

this is fact is found in the present study.

The above conclusions are preliminary, and work on this problem is

continuing.

Based on the observations as described above, the following procedures

characterizing the data are presented as being reasonable.

I. The lower _% EPI curves associated with the. plastic and elastic strain

life data can be established as described in Chapter 4. The I% EPI

curves are shown in Finures 5.6 and 5.7. Then the total I% EPI curve

of Figure 5,8 is obtained by adding (vertically) the two.

2. A lower tolerance limit can be established in the same way, i.e. by

first using conventional methods {see Chapter 4) for Zpa-N and Zea-N

curves and then adding the two. The result is shown in Figure 5.9.
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Figure 5.8

Strain-Life Curve for Example Problem

?

Z

o=

.J
q=

(:3

103

\
\

Strain-Life Curve

Ca = .0050(2N)-'108 , .491(ZN)".S40

\
\

Lower I% EPI

I ! IllllJ

N,

t I i Illl, I

10'
CYMES

5-15

t lllttlli I [ iliili l ! I1_!

I0= I0°



Figure 5.9

Strain-Life Curve and Tolerance Limit for Example Problem

T
l i I I

ire Curve

Tolerance Limit _ _'. _

"--.'>,.I

II II i ill _ III

,i...110 _ , I ,I, ,i1_1 _1 | 1_ ,,1_ t I I ,1 ill,I 10_
N, C_CLES

• I I IIIII i ! I I I t II1

10s 10°

5-16



. ' _ b and c are required.For a reliability analysis, statistics of sf, ,

Assume b and c are constants and equal to the least squares estimators.

Assume that s_ and _ are independent random variables having lognormal

distributions. In the example of Table 5.1, the statistics required

for a reliability analysis are as follows.

Table 5.2

Statistics for Reliability Analyses for Example Problem

Median Coefficient of Variation

s_ 148.8 ksl 0.042

t

e_ .491 0.263

b -.108 0

_t

c -.540 0
, , _ ,, ,,,,,

ba_ed on a 5% EPI, these values would be only slightly different

from the l_ EPl values gSven in Figures 5.6, 5.7 and 5.8

variable not random
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5._ A Model for the DistributiQn of Fatigue

Strengths at High Cycle Lives

5.4.1 Preliminary Remarks

The number of Icad cycles experienced during the lifetime of a wide

variety of structural and mechanical components is in the range from lO7

to lOlO cycles. When metal fatigue is considered to be the mode of failure,

it is necessary for the designer to know the fatigue strength (the maximum

amplitude of the oscillatory stress) for a given cycle life N.

Fatigue testing is however expensive, partly because of the length

of time that it takes to apply these long cycle lives. An accelerated test

method which has been used successfully involves loading of a specimen at

a relatively high stress level, with relatively short cycle lives, and

then extrapolating the data to the higher cycle lives.

Described as follows is a study of an analytical method for the

statistical distribution of fatigue strengths at high cycle lives based on

data at relatively low cycle lives.

5.4.2 Basic Assumptions and Description of the Problem

Consider a constant amplitude high cycle fatigue test in which pairs

!

of data (Si,Ni), i = l, n are collected. Ni (the dependent variable) is
!

the cycles to failure associated with stress amplitude Si (the independent

variable) and n is the sample size. Data from a hypothetical test are shown

in Figure 5.10. An endurance limit is assumed as illustrated by the horizontal

segment of this S-N curve. It is assumed that the endurance limit occurs at

lO7 cycles. Furthermore, it is assumed that the distribution of S at a given N

at lO7 cycles will be the same for any higher life cycle as shown in Fic:ure 5.10.
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In general, a fatigue test plan specifies a termination of the

loading on a component which does not fail before a given life. This spec-

i_en is called a "runner" and the data points are shown by the triangles

of Figure 5.1_ in which the test was suspended at 107 cycles. This data

must be included in the analysis.

To obtain a ra_dom sample of S, now defined as a random variable

denoting the fatigue strength at IO7 cycles, the following procedure is

used. It is assumed that the fatigue strength for a qiven specimen is

defined by a straight line (failure trajectory) connecting the fatigue

strength coefficient at s_ I/2 cycle and (Ni,s i) as shown in _igure 5.10.

The data point (solid point in Figure 5.17) is projected to the life cycle

where the endura_ce limit occurs, which is assumed here to be IO7 cycles.

The sample point (circle in Figure 5.10) is denoted as Si. By such a

scheme one can obtain a random sample of s.

5.4.3 Analysis of Suspended Fatigue Test Data

Incomplete failure data consisting of levels on failed components

and unfailed components are called "multiply censored." This suspended

data can be analyzed utilizing the "median rank concept" and suspended

items approach _]. The median ranks extracted from this approach will

be used to establish the empirical distribution function of fatigue

strengths.

Lipson and Sheth have described a method for obtaining the empirical

distribution function from a random sample which includes suspended items [5].

This method is a combination of a modified sudden death approach and Johnson's

concept of median ranking _]. The method involves an adjustment of the order
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I .

number based upon the position of the suspended items. Step-by-step instruc-

are illustrated by me followinQ:

I. Suppose that the failure data on n specimens consist of the failure

stresses (at 107 cYCles for the failed units and the stress levels for the un-

failed units (see Table 5.3 and Figure 5.1l). 0rdrr the failed units in the

sample from the smallest to largest failure stresses as shown in Column 3.

2. Obtain the number of suspended items which precede each Failed

unit (Column 2).

3. Determining the "new increment" of each failed unit by using the

formula

_n +
New Increment : 1 + nu"IDer'j_OT- previous failure order number

items following present suspen(led set

The new increment is recalculated each time a suspension is encountered in the

ordered stress table (see Column 4).

4. Calculate the order number for each failed unit. This calculation

is done by simple addition of the last order number and the new increment

(Column 5).

5. Obtain the median rank (empirical distribution function) of the

order number for each failed unit by the formula (Column 6).

The empirical distribution function F(S(j)) of Column 6 is used as

a basis for selecting a suitable statistical model. The method of least

squares, as described in Sections 2.5, 2.6, and 2.7, can be used. The cor-

relation parameter for the three distributions considered are
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EXAMPLE :

Table 5.3

Analysis of Suspended Fatigue Data

Given a sample of fatigue failure stress at lO7 cycles (in ksi);

n = 13; the data are ordered.

i L L11.7 i 12.2 i 12 5i_ 12.7 I, 12.8 13.3 .13"811_'0"i14"0", 14.0"i14.4 i14.7i.. , 15.0"

*Specimen did not fail at lO7 cycles.

Organize data as shown below:

(i) (2) (3) (4) (s) (6)
Fai lure Suspended Stress New Order Median Rank

Number Items S Increment** Number** F(S(j ) = j - _3Preceeding Failure (J) (j) ) n + 4

l 0 ll.7 l.00 l.O0 0.052

2 0 12.2 l.O0 2.00 0.127

3 0 12.5 l.00 3.00 0.201

4 0 12.7 l.00 4.00 0.276

5 0 12.8 l.O0 5.00 0.351

6 0 13.3 l.O0 6.00 0.425

7 0 13.8 l.00 7.00 0.500

8 3 14.4 1.75 8.75 0.631

9 0 14.7 1.75 I0.50 0.761

**An example of how the new increment and order number are calculated:

The eight failure is preceded by three suspended items. Therefore, to

find the increment, as shown in Step 3 above,

I = (13 + l) -7 = 1.75
I+3

Thus, the new order number is j = 7.00 + 1.75 = 8.75

The remaining order numbers are determined by using the same procedure and

8.75 - 0.3 _ 0.631
F = 13 + .4

5-22



Z _

] I

m _

•_ L

0 • 4

(_S_) 3GR±Ild_V SS3_IS

5-23

%

mt

..,,.I
N

I.I,.

I,==

ELi
,.,.I

U



Distribution Family Correlation Parameter,

Norma 1

Lognorma l

Wei bul I

0.2010

0.1809

0.2738

The lognormal is considered to have the best fit because it has the smallest _.

The probability plot is given in Figure 5.12. The line is fit by the least

squares method and the distribution parameters on the figure are computed from

the least squares line (using Equation 2.15 and 2.16).

In summary, for example, the distribution of fatigue strength S given

cycle life N in the high cycle region (beyond lO7 cycles) can be modelled as a

lognormal distribution. The parameters are _X = 2.67 and _X = 0. I07, where

X = In S. Using the relationships of Appendix l, the sample mean and stan-

dard deviation of S is S = 13.8 ksi and sS = 1.48, respectively. Full con-

sideration was given to "runners" in the data analysis.

Statistical methods of estimating the fatigue strength at a given cycle

life are available. Such methods, summarized by Reemsnyder (7), Lipson and

Sheth (5), and by Collins (8) include the survival method, the staircase method,

and the Prot method. Because these methods typically require long cycle lives

and relatively large sample sizes, testing tends to become expensive.

See Equation 2.29
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Figure 5,12

Lognormal Probability Plot for Fatigue Strenqth S
beyond 10 7 Cycles from the Data of Table 5.3

b..

r_

Cn_

I!

C:

I

2.40 t. _s 2.so z.ss t.6o 2.6s
x = LN( STRESS )

2.90

Estimated Parameters :

Mean of S = 13.15

Standard Deviation of S = 1.01

ux = 2.62

= O.IO7
X

5-25



5.5 References for Chapter 5

I. Dowling, N.E., Brose, W.R. and Wilson, W.K., "rlotched Member Fatigue Life

Predictions by the Local Strain Approach", Fatigue Under Com l__]ei_

Loading; Analyses and Experiments, AE-6, SAE, 1977.

2. Fatigue Design Handbook, AE-4, SAE, 1968.

3. Fatigue Under Complex Loading: Analyses and Experiments, AE-6, SAE, 1977.

4. Fuchs, H.O., and Stephens, R.I., Metal ..Fa.tiguein Engineering_ 1980.

5. Lipson, C. and Sheth, N.J., Statistical Design and Analysis of Engineering
Experiments, McGraw-Hill, 1973.

Q Johnson, L.G., "The Median Ranks of Sampl_= Values in Their Population with

an Application to Certain Fatigue Studies", Industrial Mathematics,

Vol. 2, IgSl.

7. Reemsnyder, H.S., "Procurement and Analysis of Structural Fatigue Data"
Journal of the Structural Division, ASCE, Vol. 95, No. ST 7, July (969.

8. Collins, J.A., Failure of Materials in Mechanical Design, Wiley, 1981.

5-26



CHAPTER 6 LIFE PREDICTION EQUATIONS USED FOR FATIGUE DESIGN

6.1 Preliminary Remarks

Engineering models used by designers for fatigue failure avoidance usually

employ the concept of "damage". Summarized in this chapter are some of the var-

ious forms of damage in current use. It is shown that the concept of damage can

be employed for variable amplitude loading using both a characteristic S-N curve

approach and under certain assumptions the fracture mechanics approach. More-

over the concept is used also for strainrange partitioning in which damage is

identified not according to stress level but with each of four different types

of inelastic strains.

The limit state is achieved when damage D attains a critical level 4.

Experimental results in which damage at failure _ is measured are summarized

herein. Both variable amplitude loading and strainrange partitioning results

are presented as statistical distributions of 4.

6.2 The Concept of Damage

Assume that the SN curve for a component subjected to constant amplitude

loading is as shown in Figure 6.1 and that no statistical scatter exists. Blocks

of constant amplitude loads are now applied as shown. Fatigue damage D associated

with this variable amplitude process is defined as

k n i

=i!iN- Ti) (6.1)

where ni, and N(Si) and k are defined on Figure 6,1.

.More generally as a component accumulates a load history in service, damage

can be expressed as a function of time T and several other design factors denoted

by the vector U, which relate to the loads as well as to the SN curve. Thus

DAMAGE _ D(n, U) or D(T, U) (6.2)
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Figure 5.l

Basic Terms Used to Define Damage Under Variable Amplitude Stresses

O

STRESS S

(amplitude or range

S
i
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Constant Amplitude Tests

I

I

. , IIN(Si)

CYCLES TO FAILURE, N

i

S2

nI

n2

S3

 UgUU 
n 3

• • • D •

S i

-_'IME

n.
l

k = number of blocks of loading

S. = stress level (amplitude nr range)
I

ni - number of cycles applied at stress level Si

N(Si) = number of cycles to failure at stress level S i
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Miner's rule states that failure occurs when D, a monotonically increasing

Function of time, equals unity. A more general definition is provided in Section

6.5. The following two sections summarize some damage models in current use.

6.] Some Expressions For Damage Used by Designers For VariJbl___aj!_plitude Load_n_

Following are examples of expressions for fatigue damage under variable am-

plitude (random) loading. The model to be used depends upon how the load history

and the SN relationship are specified.

CASE I Often field measurements result in a variable amplitude stress range his-

togram as shown in Figure 6.2. The fraction of time that the stress range is at

level Si is fi" Thus ni can be written as a fraction of the total number of

applied cycles, n

nI • fin (6.3)

and the damage at cycle life n is,

fi

i 1
(6.4)

CA.'_c 2 Assume a linear S-N curve, N = KS"m. Note that the value of K depends

upon whether stress amplitude or range is considered. Equation 6.4 becomes

oo

n simo= i!l (6.s)

But the summation is recognized as the expected value of Sm for a discrete random

variable (I). ®

E(S m) = _ fiSi m (6.6)
i=l

Thus D : _ E(Sm) (6.7)
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Note that in the special case of constant amplitude loading E(Sm) = Sm and

Equation 6.7 becomes

n Sm
D : _ (6.S)

An equivalent constant amplitude stress can be derived by comparing Equation 6.7

and Equation 6.8

S : [E(Sm)] l/m (6.9)
e

This stress is sometimes called "Miner's stress". Assuming Miner's rule works,

the value of Se can be entered into a constant amplitude S-N curve to predict

life N under variable amplitude loading.

CASE 3 Assume that the distribution of stress ranges S can be treated as a con-

tinuous random variable, the pdf of which is shown in Figure 6.3. The fraction

of cycles at stress level s in the interval (s, s + As) is

fi _: fs(s)As (6.10)

Combining Equation 6.1 and 6.3 with Equation 6.10 to obtain the continuous

equivalent of Equation 6.4,

k

D = n _ fs (s)'_s (6.11)

i:l N(S)

In the limit as As -_ O,
/-

,jo (s)dsO "_ n NTs-)'-'- (6.12)

CASE $ When S is continuous and it can be assumed that the S-N curve is linear

of the form NSm = K, the expression for damage becomes
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D nXJo$m
= fs(s)ds (6.131

_ote that the integral is by definition the expected value of Sm denoted as E(S m)

Thus, as in the discrete case,

n
D = _ E(SIn) (6.14)

Any statistical m_del for S can be used, but it is common to use the Weibull,

having a distribution function of the form

Fs(S) - l - exp[-(s/_))_'] (6.15)

where the parameters _ and _ must be detemlned from an analysis of the stress

data. For the Weibull

E(Sm) = _mF(m+ l) (6.16)

In the special case where F,= 2, the Weibull reduces to the Rayleigh dis-

tribution. This is an important case because the Rayleigh is the distribution

of peaks or ranges in a stationary narrow band gaussian process having RMS value

of o.

(_o) if stress amplitudes are considered

2,/_o) if stress ranges are considered

Thus we get the familiar form of Miles' equation for damage under n cycles

of stress of a narrow band process in the case where K is based on amplitude (2).

D =, (n/K)(/_)m?(m/2 + I) (6.17)
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!
6.4 Damage Usin 9 a Fracture Mechanics Approach to Fatigue

Consider the Paris equation for fatigue crack propagation under a sequence

of constant amplitude stress ranges, S

daldn : C(_') m (6.18)

where C and m are empirical constants, a is the crack length and n is cycles.

,'_K;is the range of stress intensity factor

AK = YS_ (6.19)

where Y is the geometry factor.

An expression for cycles to failure can be derived by integrating Equation

6.18, a from ao (the initial crack size) to ac (the critical crack length), and n

from 0 to N (the cycles to failure). Assuming that Y is constant (not a function

of a) and ac > > ao, it follows that

l
NSm - = K (6.20)

am/2 - l(m/2 - I)CYm
o

But this form is identical to the form of the SN curve used in the previous section.

The right hand side is identified with K, an empirical constant.

Consider a random load sequence of Si, i = l,n. If sequence effects were not

important, it may be reasonable to use _liner's rule as above, and express damage as

n E(S m) (6.21)

For this to oe a useful model, there should be a reasonable distribution of Si's,

e.g. no grouping of the large and small amplitudes. There should be no large
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_,erlJa£_ to c_use significant crack retardation. M6r_o,ie_ _, _t _':;_ _e a_zum_

that the mean stress associated with each cycle does not influence the constants,

C ana m.

As described in Section 6.3, a Miner's stress S can be defined by Eouation
e

6.9. Then an equivalent stress intensity factor can be defined as

_(e = YS_v_ (6.22)

where Se = [E(Sm)] llm.

If the model is valid, a da/dn - AK curve observed from random loading

using Equation 6.22 should produce the same results as the constant amplitude

curve.

6.5 Damage Ex_'_sions for High .T_emperature..LowC_.cle Fatigue

The T_ Loum:

_t

and creep is

A damage expression which includes the effects of fatigue

D --" T" I-i--/+

i:ILNi] ii:l
(6.23)

where definitions of ni and Ni are given in Section 6.2 (see Figure 6.1); ti is

the time duration of the load condition, i ,and Ti is the time to rupture at load

condition i. There are q discrete conditions of creep.

This model is easy for designers to use, but it does not account for syner-

gistic effects of fatigue and creep.

S_._Lvw_nge P_LZ_Lo_Lng (SRP) : The method of strainrange partitioning (SRD)

developed by Manson, Halford, and Hirschberg [3] is well documented in their

report as well as the later reports of Hirschberg and Halford [4] and Bernstein

[5].

A combination oF ,_iner's rule _r__._ohin_on's law.
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Four different types of strainranges can be defined as the basic building

blocks for any conceivable hysteresis loop:

I. PP -- tensile plasticity reversed by compressive plasticity

2. CP-- tensile creep reversed by compressive plasticity

3. PC-- tensile plasticity reversed by compressive creep

4. CC-- tensile creep reversed by compressive creep.

First strain-life relationships for each of the strainrange types are

established by experiment

ai
Ni = Ai(A_) i i = PP, CP, PC, CC (6.24)

Given a hyJteresis loop for fatigue stress at a point (obtained from stress

analysis), the fraction of each strainrange type fi, a component of the toIwil

inelastic strainrange is identified using an algorithm as described in Referenc_

3 and 4. For example, fpp - ACpp/A¢_n where A_pp is PP strainr_nge and A_in

is the total inelastic strainrange.

4 4

A_in =iZl= Az.I i=IZfi = l i = PP, CP, PC, CC (6.25)

Damage after application of n cycles of the constant amplitude strain cycle,

is defined as
4

D = n Z(f;IN.) i = PP CP, PC CC (6.26)
i=l i l ' '

6.6 Damage at Failure--Some General Remarks

Assuming that no healing occurs in the component, fatigue damage will be

a monotonically increasing function of n (or _) as shown in Figure 6.4. Dam-

age D will increase until it reaches a failure level A.
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Figure 6._

Damageas a Function of Time
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that no healing occurs

"2""i pdf of D

-'_'e- _.---Median

i _m im _11 m • I m m _ I

CYCLES OF STRESS, n (or TIME, r)

7

A more advanced model using fracture mechanics methods, considers

strength as a process which monotonically decreases: See "Relia-

bility Analysis of Fatigue Sensitive Aircraft Structures Under

Random Loading and Periodic Inspection" by J._J. Yang and !,#.J.

TraoD, AFML-TR-74-2g, February 197_.
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Note that if only one stress level is applied, failure occurs when D = L : I.

Without any knowledge of the physical process of fatigue, the obvious assumption

to make is theft in general failure occurs when D = _ = l for any sequence of

stresses. Indeed this is the Palmgren-Miner hypothesis, or "Miner's Rule" as it

is often called [6,7]. But recent studies have suggested that for design pur-

poses it is useful to model _ as a random variable [8_.

Consider a hypothetical fatigue test in which the SN behavior is determin-

istic as shown in Figure 6.1. Damage at failure denoted as Ai is measured for

m specimens subjected to different load histories as shown in Figure 6.5. If

Miner's rule is exact, all _i = I. But Miner's rule is a simple model used to

describe a complicated phenomena. As a result, primarily of sequence effects,

one should expect statistical scatter in the sample ai' i - l,m. Therefore

damage at failure A should in general be treated as a random variable.

In practice of course, observed values of _i will also contain scatter by

virtue of basic variability in material behavior. To measure the statistics on

4, somehow material variability effects must be removed.

6.7 Fatigue Design Relationships

The design life N in cycles (or T in time) is specified. Three equivalent
o o

formulations are commonly used for design purposes.

Fo_m_on I; Damage at the design life N is denoted as D(No,U). For ao ~

model in which the designer assumes that _ and U are constants, the condition

for a safe design at life N is
o

D(No,U) < (6.27)
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Figure 6,5

Fati3ue Stress Sequences for Several Soecimens in

a Hypothetical Fatigue Test

Specimen l

L Failure

time

Specimen 2 .w time

__J__FaiIure

D

Specimen n

/
, Failure

....time
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To insure a safe design given statistical scatter and uncertainties, the

designer can use a) a design curve on the safe side of SNdata, as well as

"safe-side" values for all Ui and/or b) a reduced value of _,_e.g., _ = 0.30,

rather than the _ = l of Miner's rule_

Assume that _ and U are treated as random variables. The density func-

tion for each at a given life is shown in Figure 6.4. The probability of

failure at life n can be written as,

pf = P[A < D(No,U)] (6.28)

Example: Consider the damage expression when stress is a stationary

narrow band process (Equation 6.17). The probability of failure is

pf : P[A _ (NolK)(J2_)mr(m/2 + I)]

where in general 4, K, _ and m could be random variables.

evaluating pf is described in Chapter 7.

The problem of

6 °29

Fo_m_Lon Z: Let N be a random variable denoting cycles to failure.

D(N,U) is damage at failure,

Thus

A : D(N,U) (6.30)

Inverting the expression,

N = (6.31)

Assuming that _ and U are constants, the condition for a safe design is

NO < N (or TO < T) (6.32)
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Given statistical scatter and uncertainty, a safe design can be insured by

using a) a design curve on che safe side of the SNdata, and/or b) conserva-

tire (high) values of stresses, and/or c) a value of No larger than the

expected service life rlS. For example, NO = 2NS has been used [9].

In a reliability approach, the probability of failure can be written as,

Pf = PEN < N ] (6.33)
o

= P[r_(A,U) < No]

in which A and U are treated as random variables.

pdf of N, as well as Pf.

Figure 6.6 illustrates the

Example Consider the damage expression of Equation 6.17 with n = N and

D = A. Solving for N and substituting into Equation 6.34,

pf = P[_KI(V'Zo)mF(m/2 + l) _ No] (6.3s)

where in general 4, K, o and m would be considered as random variables.

Foz_nu_=tion 3. Another approach commonly used requires knowing the distribu-

tion of fatigue strength S at a given design life No. The pdf of SIN o is

illustrated in Figure 6.7. T¢iner's stress Se (Equation 6.9) can be compared

to strength. Miner's stress will be a function of random design factors U.

In the special case of corlstant amplitude stress at level SO, Se : SO.

If the SN curve is given S = S(N), then the condition for a safe design

is

s < S(N )
e o

¢r

applied to an S-N curve already on ti_esafe side of the data

6-14
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Figure 6.6

Statistical Distribution of Cycles to Failure N at Stress Level, S

Stress

• I _ pdf of cycles

= N(_,U)

\_ "_'_

to fai I ure

N
0

Cycles to Failure, N

Figure 6.7

Distribution of Fatigue Strength and Stress at Design Life N
0

ii.

Stress

\

_dfre°_,M_er' s_ _

NO Cycles to Failure, N

pdf of fatigue strength at

a given cycle life (SINo)

6-15



For e,_ample, if the S-N curve is NSm = K, then a safe design occurs when

• , will be a random variable as suggestedSe .: (K/No)I/m But in general, Se

by the pdf of _-igure 6. _ The probability of rallure is

pf : P[S _ Se(U)]
(6.36)

Example: Miner's stress for the case of a stationary narrow band Gauss_an

process is obtained by combining Equation 6.9 and 6.16

S = v_[r(ml2 + l)] l/m a
e

Q

(6.37)

m

Assume that fatigue strength at No is given as NoS = K.

of failure is

pf = P[(K/No,I/m <._{r(m/2 + I)} I/m 3]

Thus the probability

(6.38)

In general, K, _ and m will be random variables.

Note that this form is similar to the two above examples wlth the exception

that _ is missing from this form. It's influence could be accounted for by a

variable which multiplies Se. Such a variable would describe the uncertainty

associated with using Miner's stress as a characteristic stress.

6.8 Statistical Considerations of the Palmgren-

Miner Fatique Index

The Palmgren-Miner linear damage accumulation rule (referred to herein as

"Miner's Rule") for estimating variable amplitude fatigue life is easy to use

and therefore widely employed in design procedures. But because fatigue is

a complicated process involving many factors, flirter'srule, a simplified

description of fatigue, does not provide consistently accurate predictions•

6-16



There is a need to quantify the performance of Miner's rule to provide guid-

ance to designers

A statistical study of the results of fatigue experiments of several

investigators was performed by Wirsching, Yao, and Stahl, and summarized in

Reference 8. A sun_ary of this study is presented here.

Composite statistical models of fatigue damage at failure (denoted

as _) were developed. The 1ognormal distribution was used in the statistical

analysis of _. Such a study of the statistical variability of a relatively

simple theoretical model Js necessary and desirable for the development c;f

probabi Iity-based fatigue design codes.

Define D as fatigue damage as computed by a linear damage rule. Consider

a fatigue test performed by an investigator. Let r be the number of specimens

in the test. Let ,_p be the value of D at failure for the pth specimen. To

evaluate ap,

= Cycles to failure for the pth specimen
Ap Cycles to failure predicted by the PM rule (6.39)

A sample from an investigator would be _p; p = l, r, with the tests in general

being performed at different stress levels.

Because of the scatter observed in the data, it is suggested that the

quantity A be represented as a random variable. In general, failure can be

defined as the event (D > _). This is a generalization of Miner's rule which

states that failure occurs when D = I. The probability of failure is given by

pf = P(D > _) (6.40)

Assume that_ has alognormal distribution with mean IJ_, standard deviation _,

and a coefficient of variation (C.O.V.) C_ = _/u_.
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Test data on damageat failure _'.obtained by several investigators is

_uT_:r,arizedby the distribution functions of Figure 6.8 and in Table 6.1.

Following is co_entary on this data summaryand how it was developed.

The sample ,neanof _I obtained by the ith investigator is

I r

:- S SpSi r p=l
(6.41)

and is an estimate of _ The sample standard deviation is

r
Si = T:

p=1

(6.42)

and is an estimate of _A. The estimate of the C.O.V. and median of the data

of the ith investigator are, respectively,

Ci = si/_ i (6.43)

Q • •

_i : _i I " l ÷ Ci" (6.44)

t

The assumption that _ is lognormal is based on observations of the empi-

rical distribution functions of Figure 6.8.

6.8.1 The SAE Fatigue Program

The SAE Cumulative Fatigue Damage Test Program was an effort to exchange

information between experts in universities and industry on methods of testing

and life estimation [18]. The load histories defined were considered to be

typical of those experienced by components of automotive vehicles. Test

specimens of RQC-IO0* and Man-Ten** steel were compact tension specimens with

*Bethlehem Steel; roller quenched and tempered to lO0 ksi miniminum

yield strength.

"*Uo S. Steel; hot rolled to 50 ksi minimum yield strength.
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Figure 6.8

Empirical Distribution Functions of

Damage at Failure from Various

Investigators (Key to the numbered

curves is given in Table 6.1
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Table 6.1

Estimates of Statistics of Jamaqe at F4ilure, 3

3ased on a Loqnor_ll _odet For 3.
{n - numOer of :oecimens)

,"_an of 3 Median of 3
Standard
_eviation of 3

s t

Coefficient of
Variation of

Ci

1 ,

Z.

.

6.

7.

Crichlow et _I.(£,:,_; an amalg_u_atlon
of test _ata of _ny configurations
_nd _aterlals of _Iignt ve_i¢le
st_JCtur_s including full scale P-51
_nd 6-46 air)lane wing test (n-Z66)

ScntJve (ll); amllemtlon of results
from 19 r_oets; _11 spKi_mns ZOZ4
aml 7075 alumlnum

RlcWrt and _wklrk (12); axially
loaded large (3 I/Z x I/Z in)
specimens of AS,*H-A7 (n,m31)

Nic_ert and NW_mmrk (l_; rotating
beam s_ll specimens (die. -
0.160 in) of A_A7 (n-Z�)

Toppee. Sandor, and Morrow (13);
strstn controlled tests on 2024-T_
aluminum (_mlS)

Oowling (IL); ZO_4-T4 spec!_s;
mostly tn the eiasttc range. 3ut
some with large p]astlc strains;
rainflow _t)od used to count

cycles (n-83)

Topper _nd Sandor CT_); strain
controlled tests on ZOZ4-T4
alumina _it) tensile and com-

pressive mean stresses (n-ll)

8. ,_Iner ( _); tests run at two or
more stress levels on Z45-T

Alcad (n-ll)

g. Schilling C_); _mlded cover plat_

beam sPectmefls of A36 and ASI_ AS14

under simulated random bridge
l_md i_ (n=36)

10. 5AE r_tlg_m Oestg. & Evelu_tlo_
Committee; tests on ,_noTe_ &
_QC-100; notch spKl_m_ wit)

cyclic plasticity _t notch root:
See Table III; (n-54)

"1.53 1.30 0.96Z 0.6Z7

! .7Z 1.Z3 1.58 0.980

1.Z7 1.23
(1./9)-

1._7 1.39
(z.o_)-

3.341

O.Sl_

0.269

O. 353

1.15 1.14 0.186 0.161

0.363 0.323 O.Z7l 0.314

0.336 _.809 0.219 0.262

0.)80 0.)49 0._5I O.ZS6

1.44 1.26 0.78 0.54

1.46 1.og 1.30 0.389

S_anson (i_; an am_Igawatlon of ranOom
?)tigue test data {n-671): Values

baseO on an _ssumi)tlon t_at C_ • 0.50,

and _,(1.3) - 0._7

1._I l.;4 3.7_5 3._0

"Estlnkmtes of _, _slng i "_inin_ S:I :u,-v_" 6-20



a keyhole notch. Failure was said to occur at crack initiation, which was

arbitrarily defined as a crack of 2.54 mm(O.lO inch) A total of 54

specit_enswere tested.

Results of several investigators in the SAEprogram, using various

analysis methods to predict cycles to failure, all using tile PMrule, are

presented in Table 6.2° Data from both materials are assumedto be from

the samepopulation° No attempt was madeto judge the quality of the various

analysis methods in computing the average values at the bottom of Table 6.2.

These average values were used in Table 6.1.

6_8.2 A Statistical Composite of A

The goal of this study is to provide information to designers. To

synthesize, for design purposes, the data of Table 6.1, statistics of com-

posite data from two or more investigators, the following forms were used.

l m

- _ ni_ i (6.45)= n i_l

2 1 m 2

sA = --n_l i=IS [(n i - l)s.1 + ni(_i _ _)2] (6.46)

where _ is the sample i_ean of _, _i is the sample mean obtained by the ith

investigator (as given in Table 6.1), ni i_ the sample size of the ith inves-

tigator, m is the number of investigators, s_2 is the sample variance of 4,

2
si is the sample variance obtained by the ith investigator using _i (this

is what is given in Table 6.1), and n is the total number of observations by

all investigators° Table 6.3 and Figure 6.9 provide summaries (using Equa-

tions 6.45 and 6.46) of the analysis of the data listed in Table 6.1.
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Table 6

S_.m_.,,aryS=a:is=ic_ 3n " From
SAZ Cumulative Fati3ue 3amage

Test Program _18)

Socie and Morrow (19__._

Nominal strain life analysis .885

Component calibration (incl 1.17
mean)

Neuber no:oh analysis .90

Co, orient calibration 1.21

Dowling, Brose, Wilson (20)

Base line case 1.20

Base line case (Smith mean mar.) 1.15

Load strain extrapolation of .587
elastic analysis

Load strain calibration from 2.56
Neuber's rule

Load strain calibraiton from 1.23

finite element analysis

Constant ampiitude load life .677

Land_raf, Ricnards, La Pointe (2!)

Neuber notch analysis 2.79

Load local strain analysis 2.69

Strain based analysis I.g3

Brose 52)

Incl mean stress and overstrain 1.43
effects

•568

.891

• 693

.884

•964

•922

.505

2.08

.967

.561

2.22

2.16

1.51

.970

1.06

1.00

.745

1.14

.89B

•848

.632

1.82

.955

.457

_IIwme

2.01

i .53

1.56

I .19

.855

.828

.939

.746

.73g

.920

.713

.779

"t#
.61-*

.756

.748

.794

l.09

AVERAGE VALUES 1.46 1.09 1.30 .889
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6.83 Analysis of the Variability in

For design purposes, it would be desirable to quantify the contribu-

tions of various factors to the total variability in 5. However, much

of the detail regarding experimental procedure is lost in the data of

Figure 6.6 and Table 6.1. Nevertheless, this data as a whole can be

interpreted as an amalgamation of experiences and, as such, implicitly

includes effects of many of the relevant Factors. Values of coefficients

of variation for material strength, e.g., yield strength of steel, ultimate

strength of composites, etc. are typically less than 0.15 and, therefore,

the values of Ci listed in Tables 6.1 and 6.2 suggest a relatively large

scatter in the data.

Assuming the A is the product of several random factors whose dis-

tributions are lognormal, it can be shown that

J
1 + CJ

2
= _ (1 + Ci ) (6.47)

i=l

where j is the number of factors which influence 4, and Ci is the coeffic-

ient of variation of the ith factor. It is assumed that all factors are

statistically independent.

Often available is statistical information on fatigue variability inher-

ent in the material, described by CN. Suppose that this is the only factor

for which statistical information is available_

to

Then Equation 6_47 reduces

l + CA2 = (l + CN2) (l + Co2)

where Co is the coefficient of variation of all of the other factors.

(6.48)
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In general, it is difficult to separate the effect of material

variability from statistics on ._ using the method described above. In one

example, the writer is suggesting that reasonable statistics for A when

material variability is considered elsewhere is

Median, A = l.O0

Cov, C_ = 0.30

with A being lognormal [8].

6.9 Statistical Considerations of Damage at

Faiiure for Strainrange Partitionin 9

Statistical analysis of damage at failure A for some strainrange parti-

tioning (SRP) test data is presented in this section. This exercise was

intended to provide necessary information for a total reliability analysis.

Furthermore, statistics on A provide a quantitative measure of the perfor-

mance of SRP.

Fatigue damage after n cycles is (see Sectl-6.5 for definition of

terms)
4

D : n Z (fi/Ni)
i=l

i : PP, CP, PC, CC

Note that, in general, fi and Ni are random variables so that D also is a

random variable.

The SRP model defines a "predicted life" (cycles to failure) N . In
P

Equation 6.49 let D = l and n = Np at failure; choose the

median, or best estimate, values fi and Ni. Then the predicted life is

: Z.(fi/N i )
p 1

i = PP, CP, PC, CC

(6.49)

(6.50)
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Consider a hypothetical experiment where several specimens are tested,

having the same Np but different proportions of strainrange types fi' and

therefore different lives IIi. The cycles to failure Nf for each specimen

is recorded. The scatter in the results reflects the uncertainty in

a) the life relationship, Ni, i.e., scatter in A_-N data, for each strain-

range type, b) the process of computing the partitioned strainranges, fi'

and c) in the performance of the linear damage model. Thus, Nf is a

random variable depending upon these three fundamental sources of uncer-

tainty.

Let damage at failure be a random variable denoted as 40 . This is

the random variable which describes the uncertainty in the performance of

the linear damage model. At failure D = 4° and n = Nf. An expression for

Nf can be written as (from Equation 6.49)

Nf = A-/S(fi/Nio i ) (6.51)

_o' fi' and N_ (i = 1,4) are random variables representing the three sources

of uncertainty mentioned above. The distribution of 4o reflects only the

inaccuracies of the SRP model. Unfortunately, there is no convenient way to

measure Ao. However, it is possible from test data to obtain some infornla-

tion on SRP performance.

Equation 6.51 can be reformulated using the median (and constant) values

fi and Ni.

(6.52)
Nf = Z_/_(fi/N i)

Now _ includes the variabi;ity of fi and Ni, as well as model uncertainty.

However, _%can be measured directly from fatigue data, Substituting Equa-

tion 6.50, it follows that

6-27
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> = Nf/Np ,o.z"53)

Given a single test specimen, the value of _i is

_i : NOBS(i)/NpRE(i) (6.54)

where NOBS(i) = observed cycles to failure and _4PRE(i) = predicted cycles to

failure. These values are available in the literature for SRP tests of various

types. Table 6.4 summarizes the results of statistical analyses of several

tests. For a given sample, _i' i : l,r, the statistics were obtained using

Equation 6.41 through 6.44.

Following is a brief description of the differences in baseline and verifi-

cation tests as noted in Table 6.4.

Baseline Tests - Refer to the high temperature low cycle tests used directly in

the establishment of the four SRP inelastic strainrange versus life (6_in - N)

relationships.

Verification Tests - Refers to the non-baseline high temperature low cycle fatigue

tests and results used to check how well the established SRP relationships can be

used to predict cyclic lives. A primary requisite of a verification test is that

it should contain some feature or complexity not present in the baseline test.

Finally it should be noted again that the scatter in _ as reported by

Table 6.4 includes uncertainties due to fi and Ni as well as uncertainties in the

SRP model. It is generally desirable to separate these uncertainties ( to obtain

the distribution of &o ) in order to perform a reliability analysis. No attempt

is made to do so in this study.
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Table 6.4

A Statistical Summary of SRP Data on Damage at Failure

AISI 316; 705C (130OF)
Baseline tests
Ref: Saltsman and Halford (23)

AISI 316

Verification tests

Ref: Saltsman and Halford (23)

AISI 304

Verification tests

Ref: Saltsman and Halford (23)

AISI 304 and 316

All verification test points

Ref: Saltsman and Halford (23)

AISI 316

PP ÷ PC + CC data only

Ref: Saltsman and Halford (23)

AISI 316

PP + CP + CC data only
Ref: Saltsman and Halford (23)

AISI 316

PP + CP data only
Ref: Sa!tsman and Halford (23)

AISI 316

PP + PC data only

Ref: Saltsman and Halford (23)

AISI 304

PP + CP data only
Ref: Saltsman and Halford (23)

Sample
Sample Sample Std.

Mean Median
Size, n Dev.

COV

25 1.25 1 .II .933 .891

66 2.87 5.81 l.27 2.03

llO l.65 l .89 l .08 l.15

176 3.02 6.96 1.21 2.30

9 l.86 2.15 l .21 l.16

8 i2.4 17.0 7.29 1.37

38 2.67 5.09 l .24 l .91

5 2.91 3.89 1.74 1.34

92 1.71 2.03 1 .I0 1.19
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...Table 5.4 continued

AISI 304

PP + PC data only
Ref: Saltsman and Halford (23)

ICr-IMo-.25V; 540C
Normalized and tempered
Ref_ Saltsman and Halford (23)

ICr-IMo-.25V; 485C

Normalized and tempered
Ref: Saltsman and Halford (23)

2.25Cr-lMo; 540C

Annealed
Ref: Saltsman and Halford (23)

2.25Cr-IMo; 540C

Normalized and tempered

Ref: Saltsman and Hal ford (23)

2.25Cr-IMo; 485C

Quenched and tempered
Ref: Saltsman and Halford (23)

AISI 304; 650C
Solution annealed

Ref: Saltsman and Halford (23)

AISI 304; 565C

Solution annealed
Ref: Saltsman and Halford (23)

Rene 95; 1200F

Baseline Tests

Ref: Hyzak and Bernstein (24)

Rene 95

Verification Tests

Ref: Hyzak and Bernstein (24)

Rene 95

Validation Tests

Ref: Hyzak and Bernstein (24)

Sample
Size, n

9

26

12

17

17

12

15

13

42

13

16

Std. _edian COV
Mean Dev.

1.54 1.15 1.23 .750

1.00 .409 .928 .408

1.27 .293 1.24

l.21 .241 l.19

.231

.198

0.820 .190 .799 .232

0.615 .222 .579 .360

0.899 .367 .832 .408

0.467 .185 .436 .395

1.25 .830 1.04 .663

0,920 .479 .816 .520

1.13 .327 1.08 •290
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6.10 Statistical Distribution of

The least squares program for distribution analysis as described in Section

2.5 was used to analyze the data on _. The results are sunmarized in Table 6.5.

The model which best fits the data for each sampl_ is indicated by the box

in Table 6.5. The results show clearly that the lognormal is generally the best

fit model for the samples considered. It should be noted that this implies that

it is reasonable to assume thatc,ycles to failure is lognormally distributed.

6.11 Summary Comments on Chapter 6

Provided in this chapter were equations, using the concept of damage,

which are used by designers to predict fatigue failure under both variable

and constant amplitude stresses. Statistical information on the distribution

of damage at failure was also presented. Summary statistics provide a quan-

titative description of the performance of Miner's rule. Statistics were

also provided to describe the behavior of the SRP model.

Given that uncertainty exists in all of the fatigue design factors,

the question now is how to use the damage equations to make decisions which

aill produce a high reliability product. Chapter 7 will summarize elements

of modern structural and mechanical reliability theory, and Chapter 8 will

address specifically the problem of fatigue reliability.
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Table 6.5

A Summary of the Best Fit Distribution for SRP Data on Damage

at Failure ;. Using the Lea_t Squares Method

AISI 316; 705C (130_F)
Baseline tests

Ref: Saltsman and Halford (23)

AISI 316

Verification tests

Ref: Saltsman and Halford (23)

AISI 304

Verification tests

Ref: Saltsman and Halford (23)

AISI 304 and 316

All verification test points

Ref: Saltsman and Halford (23)

AISI 316

PP ÷ PC + CC data only

Ref: Sal'_sn_n and Halford (23)

AISI 316

PP + CP + CC data only

Ref: Saltsman and Nalford (23)

AISI 316 .

I:P ÷ CP data only

Ref: Saltsman and Hal ford (23)

AISI 316

PP ÷ PC data only

Ref: Saltsman and Halford (23)

AISI 304

PP + CP data only

Ref: Saltsman and Halford (23)

: A - C)

SamQl e NORMAL LOGNORMAL
Size, n

25 .SSl !.197I

66 .731

llO .553

176 .772

9 .484 .179

8 .485 .332

38 .715

5 .578

92 .566

WEIBULL

.280

.222

.]78

.237

•251

.370

.204

smallest value of _ indicates that distribution which best fits the data;

the box indicates the best fit
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...Table 6.5 continued

AISI 30:
PP + PCdata only
Ref: Saltsman and Halford (23)

ICr-IMo-.25V ; 540C

Normalized and tempered

Ref: Saltsman and Halford (23)

ICr-IMo-.25V; 485C

Normalized and tempered

Ref: Saltsman and Halford (23)

2.25Cr-I Mo; 540C

Annea Ied

Ref: Saltsman and Halford (23)

2.25Cr-IMo; 540C

Normalized and tempered
Ref: Saltsman and Halford (23)

2.25Cr-I Mo ; 485C

Quenched and tempered
Ref: Saltsman and Halford (23)

AISI 304; 650C

Solution annealed
Ref: Saltsman and Hal ford (23)

AlSl 304; 565C
Solution annealed

Ref: Saltsman and Halford (23)

Rene 95; 1200F

Baseline Tests

Ref: Hyzak and Bernstein (24)

Rene 95

Verification Tests

Ref: Hyzak and Bernstein (24)

Rene 95

Validation Tests

Ref: Hyzak and Bernstein (24)

Sample

Size, n

9

26

12

17

17

12

15

13

42

13

16

NORMAL

.313

.272

.420

.221

_622

.171

LOGNORMAL

.423

All

.285

.245

.414

WEIBULL

•365

•257

.296

.291

.188

.238

.434

.269

.421

.268

.191
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Chapte_ _ 7 A REVIEW OF MODERN PROBABILISTIC DESIGN THEORY

7.1 Introduction

An example cf a fatigue reliability problem is provided in Table 7.1. The

design factors are treated as random variables reflecting uncertainties due to

statistical scatter in observations as well as assumptions made in the analysis.

The probability of failure is computed by solving a probability problem. If pf

is less than Po' a predetermined maximum allowable risk, the design is considered

to be safe.

It is assumed that the condition for failure is described by an algebraic

expression. For example, from Table 7.1, the condition for fatigue failure is

YKo[Z(6qL/bh2)]-m <.NO

Each term on the left hand side could be treated as a random variable. The gen-

eral goal of design is to select design variables so that the probability of

occurrence e.g. the above event, is acceptably small over the design life.

It is the goal of this chapter to provide a concise summary of the tools

available for reliability analysis, i.e. computing the reliability or the proba-

bility of failure of an index thereof. A number of methods are reviewed. No

specific recommendation is made regarding a preferred approach. Indeed a relia-

bility analysis must be tailored to the design procedure, the data available, and

the way in which the results are to be used.

The following summary of modern probabilistic design theory is based on the

articles by Hasofer and Lind (1), Ditlevsen and Skov (2), and the reports of

Ellingwood,.Galambos, MacGregor, and Cornell (3), Comite Europeen du Beton No. ll2

(particularly the commentary by Rackwitz) (4), and CIRIA No. 63 (5). Many of the

operations described are application of elementary probability theory. Therefore
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Table 7.1

A SUMMARY OF A FATIGUE RELIABILITY PROBLEM

GIVEN :

(a) Stress

|

< L _ Q(t) : Qsin_t
II .... b

: r_c _ 6b6h_Stress Amplitude, S° I

(b) Fatigue Strength of Material ;NSm : K

where N : number of cycles to failure

(c) Design Life, No

(d) Design factors (Q, L, b, h, K, m)

are in general, random variables.

(e) Non-statistical uncertainty exists

i Due to the effects of manufacturing and assembly operations and use in
service

K = YK°

ii Due to assumptions made to compute fatigue stresses
S=ZS

... o y and Z are random variables which describe this "professional"
uncertainty

FIN____DThe probability of failure, pf

FORMULATION
The event of failure is N _ No. The probability of failure is

pf = P[N _ No]

Substituting into the above expression for N,

pf = P{YKo[Z(6QL/bh2)]-m <_ NO }

We are left with what is, in general, a difficult probability proble_

Moreover we must also define a safe level of risk Po" The design is

acceptable if pf _ Po"
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the reader is encouraged to have available a good elementary text in probability

theory and statistics, e.g. Meyer (6), Hines and Montgomery (7), Bowker and Lie-

berman (8), etc.

7.2 Basic Definitions

A basic assumption in the following discussions is that the Cailure condition

can be written as an algebraic function,

R(X) < S(Y) (7.1)

where R and S, functions of several random design factors X and Y, represent

strength and stress functions respectively. The assignment of factors to R and

S is often arbitrary. The tilde underneath the variable indicates that the quan-

tity is a vector (or multivalued). The design factors U = (X,Y)_~ can be separated

into the known random variables V and the design parameters to be determined A,

e.g., cross sectional area, sectional modulus, etc. Thus U = (V,A). Following

are the basic assumptions regarding U.

It will be assumed for simplicity that the standard deviation oi = 0 for each

A i. Geometric variances are usually small compared to others. Furthermore, it is

assumed that all Ui are independent. If two or more design factors are correlated,

then a transformation to uncorrelated variables may be made (1).

Define the failure surface or limit state as

g(U) = R(X) - S(Y) = 0 (7.2)

The failure surface is the boundary between the safe and the failed regions in

design parameter space. In general, there can be several limit states for a com-

ponent, e.g., yield, buckling, fatigue, etc.
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The failure function, g, is defined as

g(U) : R(X) S(Y) (7.3)

and the failure condition for failure event) occurs when S(Y) exceeds R(X). Thus

the failure condition is,

g(U) < 0 (7.3)

For example, Figure 7.1 shows a single element, single load structure with

random design factors R and S. Here R and S are considered the basic variables.

The overlap in pdf's suggests that it is possible to select R and S at random

such that R < S and failure occurs.

Design parmeter space for this case is shown in Figure 7.2. The limit state

is R = S. The failure condition is R - S < O, or simply R < S.

7.3 The Full Distributional Approach

It is assumed that the exact statistical distribution of each design factor

Ui is known.

The probability of failure (or risk) pf is defined as the probability of the

failure event,

pf : P(g(U) < O) (7.4)

For example, ,f R and S are the basic variables, the probability of failure is

pf : P(R - S _ O) or P(R _ S).

In general, pf can be computed as (3)

Pf =_ fu (Ul' "'" Uk)dU "'" dUk (7.5)

where _ is the region of U where g(U) _ O, fu

7-4
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i/_ ,/ A, ,_rea

R, strength

stress

(Q/A)

fR" pdf of strength

fs' pdf ._
#

# %%

Figure 7.1 Probability Density Function; (pdf) of

Stress and Strength

SAFE /\Failure//__ (Limit sSt_fe_C_ : S

S\\\\ \

Figure 7.2 Design Parameter Space when _ and S are the Basic Variables.
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the number of design factors.

are (R,S) and statistically independent, it can be shown that

CO

= 1 -_ fR(r)Fs(r) drPf

: fs(S)FR(S) ds
0

where f(-) : probability density function and F(.) = cumulative distribution

function. The subscripts denote the random variables.

Exz_m_ of Closed Fore, Sob._t_ons

(a) Onlj( one random variable.

Equation 7.6 becomes,

pf = P(R < SO) = FR(S o)

In the special case where the two basic variables

If S = So , a deterministic real

(7.6)

number, then

(7.7)

and if R = Ro, deterministic with only S random,

pf : P(Ro < S) = 1 - Fs(Ro) (7.8)

Example: Cycles to failure N of a component is known to have a Weibull dis-

tribution with parameters _ = 3.58 and B = 21.25 thou-cycles. N is a "strength"

variable. The design life ("stress") is given as NO -- 12 thou-cycles. Compute

the probability of failure, i.e. if a member is selected at random, what is the

probability that its life will be less than 12 thou-cycles?

pf : (N < No) = FR(No)

= l - exp[12/21.25) 3"58]

: 0.121

The pdf of N and p is illustrateci in the following figure.

(7.9)
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fN(n)

Pf =0

I

NO = 12 n

(_) The Normal Format: Assume all Ui have normal distributions and that the

limit state has the linear form. Let

k

Z - g(U) = A + Z 3iU i
~ i=I

(7.1o)

where A and Bi are constants.

From elementary probability t_eory (e.g. Reference 7) the random vari,:ble Z

will also have a normal distribution. The mean and standard deviation of Z are

_Z : A + _ Biu i oZ = 2oi
i=l v :

(7.11)

The failure condition is Z < O. The probability of failure is

pf : P(Z < O) (7.12)

The probability density function of Z is shown in Figure 7.3. Using stan-

dard methods of calculating probabilities for a normal varlate,

Pf : P(Z < O)= PC czUZ < UZTzzi

7-7
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Figure 7.3

The Probability Density Function for Z

fz(Z)

pf : p(z<_o)

\

_Z

a_Z

- )
Z'_Z
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pf =

where _ is the standard normal cdf, and

= _zlaz (7.14)

is called the safet_y - index. _ is related to pf as shown in Figure 7.4. Note

from both Figure 7.3 and 7.4 that the safety index B plays the same role in pro-

babilistic design as does the factor of safety in conventional design, i.e., the

larger is B, the smaller is the risk, or pf.

Example of the Normal Format: Consider the tensile bar of Figure 7.1.

Stress, S = Q/A where Q is a random load variable having mean UQ and standard

deviation OQ. The strength of the bar R is considered as a random variable having

mean and standard deviation of uR and _R" Compute the probability of failure.

The mean and standard deviation of Z is, (from Equation 7.11)

uz : uR - UQ/A

_Z =/_R 2 + (°Q/A)2

(7.15)

(7.16)

Then,

pf : ¢(-B) (7.17)

where B : UZ/q Z.

(c) The Lognormal Format. The lognormal distribution plays an important role

in probabilistic design and in particular for problems which involve fatigue.

Propertles of the lognormal distribution are summarized in Table 2.5 with a more

complete discussion in Appendix I.

Consider a restatement of the limit state and a redefinition of g. Let,
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g(U) : R(X)/S(Y) = 1 (7.18)

Now the failure condition is g _ I. Assume that (a) all Ui have lognormal dis-

tributions, and (b) g(U) is a multiplicative function of the design factors

K a.

g(U) :i_l B Ui I
(7.19)

where B and all a. are constants. Let Z = In g.
l

K

Z = In B + Z ailn Ui
i=l

(7.2o)

Because Ui is lognormal, it follows that In Uiis normal. Then this format be-

comes identical to the normal format.

The failure condition is g _ 1 or, as above, Z _ O. The pf is given by

Equation 7.!7 with B : Uz/_ z, and

I'K uia tUZ : Z : In g : Inli_iB

az = In =I

(7.21)

where the tilde indicates a median value and Ci is the coefficient of variation

(cov) of U.. For a random variable X, the median and cov in terms of the mean
1

u x and standard deviation _X are respectively,

X : u + C x Cx : aX/uX (7.22)

See Appendix 1 for additional deta<l.

The lognormal format is particularly useful in fatigue design because some

of the important equations tend to be multiplicative.
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Example: The limit state for fatigue under a stationary gaussian process having

RMS, _ is (see Equation 6.29)

A _ A_Gm (7 23)
K

where A = No(i'z)n?(m/2 + l), a constant. A, K and o are random variab]es. Fail-

ure occurs when the right hand side (stress) exceeds the left hand side (strength)

g(U) : AK (7.24)
- Aam

failure occurs when g < I. The mean value of Z is,

uz = In(AK/Ac m) (7.25)

where the tilde indicates median values. Note that for th_ lognormal, the mean

Cx<: +UX and the median X of the random variable X are related by X Ux

Also

/ CA2) 2)m2] I/2 (7.26)_Z = [In{(i + C )(I + (I + C

Then S and pf are determined by Equation 7.13 and 7.14.

7.4 The Full Distributional Approach: Monte Carlo Methods

Consider a complicated design problem having a limit state, for example,

Z = g(U) = (AXa/y b) + cuClnv + K = 0 (7.27)

in which A, C, a, b, c, and K are constants and X, Y, U and V are random variables

having a Weibull, normal, lognormal and gamma distribution respectively. Evalua-

tion of pf using Equation 7.5 is a practical impossibility.

Monte Carlo method_ howeveG can be used to obtain approximate solutions to

complicated probabilistic design problems as described above. Estimates of the
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distributions of complicated functions of randomvariables can be used to evaluate

risk.

Monte Carlo methods are widely used, and only a demonstration will be pre-

sented as follows"

Example: Cycles to failure in low cycle fatigue for AISI 316 stainless steel

is given as
N = Z,G(_) "1"71 (7.28)

,o

where _, G and _ are lognormally distributed ra_dor,_variables having the following

values for the median and coefficient of variation.

Median COV

1.00 0.30

G 0.222 0.593

0.300.015
i

The design life is given as No = 40 cycles. Determine the probability of failure.

The limit state is N = NO, and the event of failure is (N _ No). Thus

pf : P(N < NO) (7.29)

!

An e_timate of the cdf of N can be made by first sampling K values of 4, G

and _ at random from the lognormal. These values are used to compute a sample

of size J of N from Equation 7.28. Statistical analysis of N can include esta-

blishing the empirical cdf. For the above example the empirical cdf is automa-

tically plotted as shown in Figure 7.5. The plot shows an estimate of pf : 0.0054.

A closed form solution to the above problem is available (See Appendix l ).

However, if for example A had a lognormal, K had a Weibull and _ had a normal,

establishing the distribution of N by analytical methods would be a practical

impossibility. Nevertheless, the approximate Monte Carlo solution is no more

difficult than that of the above example.
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Figure 7.5

The Empirical Distribution of ,NPlotted on Lognormal Probability Paper
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7.5 First Order Second Moment Methods

In the full distributional approach described above, it is assumed that each

design factor has a known distribution. However in practice, these probability

laws are seldom known precisely because of a general scarcity of data. In some

cases only the mean and standard deviation may be known with any confidence and

even if the distributions of all design factors are known, it is usually imprac-

tical to evaluate Equation 7.5.

The difficulties above have motivated the development of first order second

moment (FOSM) reliability methods. The random variables are characterized by

their mean and standard deviation.

The basic measure of reliability is the safety index B : Uz/_ Z. From exam-

ination of Figure 7.6 it is clear that B as a measure of safety can be employed

for any g(U) and any distribution of each Ui. However Z has a normal distribution

and Equation 7.13 for pf applies only for the linear form, Equation 7.10.

Determination of uZ and _Z where Z = g(U),~ a complicated function, is in

general very difficult. However these terms are relatively easy to evaluate if

g(U) can be linearized by a Taylor's series expansion about U . Excluding higher
~

order terms, n ,

Z : g(U*) + Z(_g/_Ui)u*(U i - Ui ) (7.30)
i=l

It is now a relatively simple matter to compute uZ and _Z' but a key consideration

is selection of the appropriate linearizing point U

Mean VccZue Me,rhode. In earlier structural reliability studies, the point U

was set equal to the mean value _. Assuming that all U i are independent, it can

be shown that

_Z = g(_)

= _ _g 2 _i2]I/2
_Z [Z(_Ui) u_ (7.31)
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Figure 7.6

Relationship with Safety index to Risk and to "_Zand :_
L.

Failure -, Z : g(U) < 0
g

Mean and Standard Deviation of Z;

'_Z = E[g(U)] cZ : IVarig(U)]

Safety Index;

: UZ/_ Z

fz(Z)

Changes in UZ (larger) and _Z

(smaller) to increase _, will

decrease pf,.., for any distri-

]_Z -'-I bution of Z.

Pf

UZ z
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where _. = the standard deviation of U..
1 1

Example: Consider the tension bar of Figure 7.7. Compute the safety index.

Z = g(U) = g(R,A) = R - Q/A (7.32)

Note that the function g is formulated so that the limit state is Z = 0 and the

failure condition is Z < O.

PZ : g(PR'PA ) : UR - Q/PA (7.33)

 z2:( >2 R2+C >2OA2

with the partials evaluated at the means.

OZ2 = OR2 + (Q/UA2)2OA 2 (7.34)

Substituting the values from Figure 7.7 uZ = 26.3 and aZ = 6.45. Thus

: Uz/az = 4.07 (7.35)

Evaluation of B for this case was relatively easy. Even for more complicated

limit state functions the operations are not Jifficult. On the other hand there

are significant limitations and criticism of mean value first order second moment

methods which have focused on the following:

(a) In this approach, the measure of safety is B, which in some cases gives

weak information on the probability of failure,

(b) Information on distributions, if available, cannot be included in a

logical way,

(c) Th: linear approximation of g(U) at the mean of the various variables

7-17



Figure 7.7

DATA FOR EXAMPLE PROBLEM

STRENGTH_ R

_R = 62 ksi

oR : 6.2 ksi

AREA, A

uA = 2.80 in2

oA = 0.14 in2 (very poor quality control)

LOAD, Q = I00 kips (Deterministic)

Limit State:

Formulation l

Z = R - Q/A - 0

Formula tion 2

Z _ RA - Q - 0
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appears to be too inaccurate in the face of severe non-linearities of this

function in manydesign situations, i.e., the higher order term_ in the Tay-

lot's series exparsion are important.

(d) Equation 7.31 for uZ and o,L is valid only for relatively small variances

(typically for Ci < O.IS). In the fatigue problem most design factors have

"large" variances, ... again the higher order terms are important

(e) and the most important, the method fails to be invariant in that S depends

upon the mechanical formulation of the problem.

The lack of invariance problem can be illustrated using the above example.

Note that an equally valid statement of the failure condition is

Z:RA-Q<O (7.36)

Using procedures described above,

u z : UR_A - Q (7,37)

2 2 2 2 2
oZ : uA c_R + uR c_A

Substituting values from Figure 7.7, uZ = 73.6 and oZ = 19.4 and B = 3.79.

Different values of B are obtained from two equally valid statements of the

failure condition. It is principally this problem with the mean value method

that led to the development of the generalized safety index (1).

Advanced F6_t O,_d_ Second Moment MeJtho_s. It is now re,-ognized that B will

be invariant to formulation if the linearization point U is chosen as a point on

the failure surface. The following discussion describes how to compute the genera-

lized safety index and to establish the appropriate U

Hasofer and Lind have proposed a general approach which is exact and invariant

to mechanical formulation (1). As an example, consider R and S as the basic
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variables.

the joint density function in region _.

reduced variables:

r : (R - _R)/_R

In Figure 7.8 the probability of failure pf will be the volume under

Perform a transformation; define the

s : (s - _s)/_ s (7.38)

r and s have means equal co zero and standard deviations equal to one.

Figure 7.9 shows the space of reduced variables. Note that again pf is the

volume under the joint density function in _. Thus the distance A _ OP is a

measure of reliability. As the failure surface moves to the right, pf gets smaller

and A gets larger. Therefore A is a measure of reliability. Furthermore from

geometric considerations
k

= (UR " _S)/Y_R 2 + °$2 (7.39)

which is exactly the same as B obtained from Equation 7.31 for g = R - S.

The desig_point is defined as the point on the failure surface closest to

the origin of the reduced coordinates. In the above example it would be the

point (s ,r ) as shown in Figure 7,9. The design point in the basic variables is

then determined by inverting the original expression, e.g., R = r oR + uR from

Equation 7.38.

Define the 9eneralized safety index, B as the minimum distance from the

origin of the reduced variables to the failure surface

6 = min {TUl2 + u22 + ...Un2 } (7.40)

Subject to g(U) = O, where the reduced variables in terms of U. are
1

ui : (Ui - _i)'oi (7.41)

7-20



Figure 7.8

Parameter Space When R and S are the Basic Variables and the Limit
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Such a procedure will produce a design algorithm which is invariant to formulation

because the failure surface is the same regardless of how it was written. Figure

7.10 illustrates the failure surface in two dimensions. Ui are the _educed varia-

bles.

Another viewpoint of this problem is to consider the system of equations (6),

_gil_ui

ai [_(_gl/_Ui)2]i/2 (7.42)

ui _ -ei B

gl(ui ) : 0

where 8 is the distance to point u on the failure surface gl in reduc-d coordi-

nates. _i is the direction cosine of the i th coordinate relative to _ . These

systems of equations are solved for the _i's and u which minimizes 5.

It is also possible to redefine any or all of the basic variables by making

' : In U. Then, the mean and standard deviation of U'a log transformation Ui i"

are (assuming the lognormal distribution moments)

CU 2) ~IJU,= In uU - 1/2 In (l + = In U (7.43)

OU, : /In ( l + Cu2 )

For convenience, the subscript "i" has been dropped. The reduced variables are

u = (U'- Uu,)l_u, (7.44)

so that the original variables in terms of the reduced variables are
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Figure 7.10

Generalized Safety Index in Two Dimensions
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U : exp(;:Uj + U_u,) (7.45)

In general the log transformation would be performed on large variance

design factors, and in particular would be useful in the fatigue problem.

To compute _ one must in general perform, an optimization calculation. The

author's experience is that most failure surfaces are well behaved and as a

result, convergence to an accurate (four place) result using a relatively crude

optimization algorithm, requires a n_gligable amount of computer time, even for

several design variables.

Example: Consider the problem of Figure 7.7.

the failure surface are

Z = R - Q/A = 0

The two valid expressions for

(T.46)

=RA-Q=O

The reduced coordinates are

r = (R - UR)/_ R a = (A - _A)/_A (7.47)

Using the values in Figure 7.7 and substituting for R and A into either of the

expressions for Z, the same expression for the limit state results

gl(r,s) = (62 + 6.2r)(2.8 + .14a) - lO0 = 0 (7.48)

This function is plotted in Figure 7.11. Also shown is B, the minimum distance

to the failure surface as well as the design point (a , r ). Here the values were

determined graphically.

Note that from Figure 7.10, the procedure for determination of _ is equiva.

lent to linearizing the limit state equation at u and computing 3 associated with
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Figure 7.11
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the linearized rather than the original limit state. From Equation 7.30,

it can be shownthat

3Z *
_Z = E(Z) =i=IT(_-Ui)U*(_i_- U. ) (7.49)

2

2 E[(Z - UZ)2] = Z (_Z/_Ui)u*ai 2 (7.50)dZ =

In the above example of Figure 7.11 R = 38.0, A = 2.632 and _ = ¢.05 in

both formulations.

In summary, the generalized safety index B provides a measure of reliability

for which is invariant to the mechanical formation of the limit state. It is

necessary to specify only the mean and standard deviation of each design variable.

The _ so defined contains in general, weak probability information. However, if

the variables are normal or lognormal (and the log transformation is used), then

pf = ¢(-B) is a good approximation to the exact probability of failure as would

be computed by Equation 7.5.

7.6 Extended Form of the Generalized Safety Index

The procedure described in the previous section gives values of _ which may

be related to the probability of failure only in those special cases where design

factors have normal or lognormal distributions. But many design problems involve

random variables having other distributions eog. Weibull. Computation of the

probability of failure in the general case of a non-linear limit state and design

variables having arbitrary distributions can be accomplished by a very complicated

numerical integration (Equation 7.5) or by Monte Carlo methods. Neither method

is practical for general design application.

In 1976 Rackwitz has proposed an extension of the generalized safety index

concept (6,7,7,12) in which appropriate distributional information could be

incorporated. The basic idea is to transform the non-normal variables into
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equivalent normal variables. This transformation may be accomplished by approx-

imating the true distribution of variable U. by a normal distribution at the
1

value Ui corresponding to a point on the failure surface. The justification

for this is that if the normalization takes place at the point close to that

where failure is most likely, (i.e., minimum _), the estimates of the failure

probability obtained by the approximate 9rocedure sh,_uld approximate the true

(but unknown) failure probability quite closely (6).

The mean and standard deviation of the equivalent normal variable are

determined such that at the value Ui, the cumulative probability and probability

density of the actual and approximating normal variable are equal. Thus,

N

fi(uT)
(2.24a )

ui = U I [Fi(Ui)]_ i (2.24b)

in which Fi and fi = non-normal distribution and density function of Ui and

_(.) is the density function for the standard normal variate. Having deter-

N N
mined _i and _i of the equivalent normal distributions, the solution proceeds

as described in Equations 7.40 to 7.42. Inasmuch as the checking point

variable Ui changes with each iteration, the parameters u_ and _ must be

recomputed during each iteration cycle also. However, since all calculations

are performed by computer, this does not materially add to the complexity of

the reliability analysis described earlier.

It has been observed that this approximate technique often yields excel-

lent agreement with the exact solution, e.g. as obtained by Equation 7.5 (6.12).

However, it has been noted (15) that the checking point may not correspond

exactly to the point where the joint probability density is maximum and failure

is most likely. However, this procedure does not reduce the error which is due
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to the linearization of what may be a generally nonlinear failure boundary

at the design point. Unless the failure boundary is highly nonlinear, how-

ever, as is the case in somestability problems, this source of error is

small compared to the accuracy with which most of the parameters in engineer-

ing reliability analysis can be estimated.

A computer code using the Rackwitz algorithm has been written as an

activity of this study (called SUPER-HASL).An example which illustrates

the efficiency of this algorithm is presented in Section 8.4. In this demon-

stration, the probability of failure is computed at roughly I/6 of the cost

of Monte Carlo.

SUPER-HASLhas only recently been developed. The efficiency and accuracy

of the Rackwitz algorithm will be investigated in future studies.

7.7 Summary Comments on Target Reliability Levels and Technique

Important questions have not been addressed in the previous discussion. Fol-

lowing are answers to some key questions regarding implementation of reliability

methods.

How _ch Confidence Can We Pout Into pf?

A computed value of probability of failure pf should be interpreted as an

"index" of risk rather than an actuarial prediction, pf can be sensitive to the

many assumptions used that one may have little confidence in the quality of the

point estimate of pf. An _stimate of pf is sometimes called the "notional pro-

bability of failu,-_". In practice, B is now more commonly used (See Ref 4).

what Should be a T_get Value of B (o_ pf)?

The target design value of _, denoted as _o' depends entirely on the appli-

cation. Values of 3 implied in current codes and procedures typ cally range from

2.0 to 6.0° The value of _o = 3.0 has been suggested for general construction (4).
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To establish 8°tne engineer can (a) attempt to evaluate 8 inherent in current

design procedures as a reference, and (b) use ar implied relationship betvleen

and pf assuming that pf accurately describes risk. Ultimately the designer has to

use his judgement and experience in making a decision regarding acceptable levels.

C_z_ Wc P_ov_dc _ Genc_JZ Rc_ab;P_tu _qetltodTf:'t Ca_ be U_ed Fo_ _,ZZ C_c_'.,'

It is impossible to recommend a genera] procedure which can be used in all
l

cases because each class of problem seems to have its own unique characteristics.

A reliability method must be tailored to the sit _tion. However so_ general

observations can be made from the above discussion. A summary of procedures

available for each problem type is provided in Table 7.2.
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Table 7,2

A SUMMARYOFMETHODSOF PROBABILISTICDESIG;_

Formof the Failure Function

Z : g(U)

A stress and strength variable have
known distributions

Linear (Equation 7.10); all design
factors normal

Multiplicative (Equation 7.19);

all design factors lognormal

g is any function; all design factors
have known distributions

Reliability Method of Preference

pf can be computed by numerical integratio_ _
(Equation 7.5)

Z is exactly normal and Pc can be computed
exactly (Equation 7.13 anC 7.14)

Z : In g is exactly normal and Pc can be
computed exactly (Equation 7.13 _nd 7.14)

Monte Carlo method; a relatively easy

method for estimating p, but unweildly for

a designer; the Rackwitz algorithm may be t_

g is any function; all design factors
have known means and variances but
the variance is small (COV < 0.15)

g is any function; all design factors

have known means and variances; if

variances are large, use a log trans-
formation on each factor

besl
The mean value first order second moment

method provides an easy approximate
method to evaluate _.

The generalized safety index can be

computed using a digital computer code
(Ref 2,6).

g is any function; some design factors
have known distributions but others

have only means and variances known.

The generalized safety index can be com-

puted. A digital computer program is

required. The method of analysis is not

described herein, but is provided in
Ref. 6.
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Chapter 8 DEMONSTRATION OF RELIABILITY ANALYSIS TO FATIGUE PROBLEMS

8.1 Preliminary Remarks

Each design and safety check problem seems to have its own unique features.

Therefore it would be difficult to propose a general reliability format which

could be used in all problems.

Three examples, presented in this chapter, illustrate how some of the relia-

bility methods discussed in Chapter 7 can be employed in fatigue problems. The

examples treat models used to predict high temperature low cycle fatigue. The

first uses strainrange partitioning to define the limit state and the second

and third use the local strain approach.

These examples do not exhaust available reliability methods but provide only

a sample of the possibilities.

8.2 E_ample I; Strainrange Partitioning in a Reliability Format.

Consider a component for which high temperature fatigue analysis is performed

using strainrange partitioning. Only PP and PC strains are present. The limit

state is

A = NOFfpp ÷ fPc .] (8.1)

See 3ection 6.5 and 6.9 and Reference 1 for definition of terms. The data for

all _rameters are given in Table 8.1.

The right hand side of Equation 8.1 is damage at the design life NO. Fail-

ure occurs if this exceeds _, the damage at failure. Thus the left hand side can

be considered as "strength" and the right hand side as "stress".

The random variables 4, G, H, and _ are related in such a way that a closed

form solution for probability of failure, e.g. using EGuation 7.5, would be

extremely difficult. In lieu of this, two approximate techniques for reliability

analysis are pursued.
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Table 8.1

Data for Example 1

Random Variables

A

G

H

Ac

N 500 cycles,
O

fpp 0.70

fPC 0.30

y -1.711

n -I .188

(all

Median

design life

assumed to

1.0

.222

I.673

0.02

be lognormally distributed)

Coefficient of Variation

0.30

0.406

0.393

0.300
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I. The 9eneralized safety index can be computed. A log transformation i_ per-

formed on all four variables. A digital computer code (HASL) is employed.

The output is presented in Table 8.2. The computed safety index is # = 4.08.

The generalized safety index provides a good approximation to the probability

of failure using pf = ,_(-_) when the design factors are normal or log-
**

normal, even though the limit state is not linear in the design variables

Here pf = 2.28 x 10 .5 . (See Figure 7.4)

2. The Monte Carlo method can _e used to estimate the probability of failure.

Equation 8.1 can be rewrittem as

N : Efpp

'L;(a )Y
fPC zl : No

+

H(_E)

(8.2)

N is a random variable denoting cycles to failure. Failure o_curs if N _ No .

The Monte Carlo method (Section 7.3) is used to obtain a random sample of N,

the distribution function of which is plotted on lognormal probability paper

in Figure 8.1.

Graphically extrapolating the empirical distribution function to NO = 500

cycles, the inwrse cdf, equal to -B, indicates that _ : 3.9. The corresponding

pf = ¢(-3.9) = 4.85 x lO-5.

Considering the degree of extrapolation required for the Monte Carlo method,

it is not surprising that there is only fair agreement between the two methods.

See Section 7.4 for the description of the generalized safety index.

Just how good this approximation is, in general, is presently under study.
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Table 8.2

Output of HASL(a)--A Program for Computing the Generalized

Safety Index--for the Example of Table 8.1.

DESIGN VARIABLES

VARIABLE TmANSFORmATION(a)

G I

__N_ oZ........

1

MEANeNEDIAN _b) STD OEVtCOV (c)

• I.00OOE*01 .......... .30QOOE+O0 .....

•2ZZOOE+O0 ._ObOOE+O0

_ZOQ_O.Em_OZ ............... ._LQO0_0_E__O.O___._

• 16730E+01 , .39300E*00

DESIGN POINT

DELTA

G

EOSLN

XR(I)- -2.0231B

XR(3I- Z._q21q

_'_ Sl'_O-_-"

X( l,)= ,9521_E4"00

X'3)- .,_81_0E-02

"X( _T,,---"_I_"7"_'{E_;bi

SAFETY INOEX_ BETA • _,07S32

NOTES:

Ca)

(b)

(c)

HASL is a digital computer program developed by P. H. Wirsching, University

of Arizona, for computing the generalized safety index

A "l" indicates a log transformation on each variable

With a log transformation, the listed values are the Median and the COV
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8.3 Exap_le 2: A Local Strain Analysis Problem
in a Reliability Format

A f_tigue life estimate is required for a turbine disk. It is assumed that

the fatigue crack will initiate at a notch in the rim provided for a blade as

indicated in Figure 8.2. Stress and thermal analyses based on the definition of

a duty cycle (one flight) will provide the normal stress S as well as the equi-

valent stress _e KtS and the temperature et the notch as a function of time.

A typical stress and temperature history shown in Figure 8.3 silows that the peak

stress will not, in general, occur at the same time as the peak te,_oerature.

Generally speaking, in the event of cyclic plasticity at a notch, the local

strain approach to fatigue life prediction (I, 2, 3) would be the method of pref-

erence. The most serious limitation to such an approach in dealing with high

temperature is that the strain life relationship must be based on a given constant

temperature.

Application of the local strain approach to high temperature fatigue prob-

lems has considerable appeal. This approach to fatigue life prediction is now

commonly used by mechanical designers in many fields. Analysis methods are well

developed, including life _rediction of components subjected to random loads

and having notches which experience cyclic plasticity. While this method cannot

explicitly treat the synergistic effects of creep and fatigue, life estimates

may be reasonable for those components where creep effects may be small in com-

parison to fatigue. This may be the case for example for some turbine hot section

components where cycle lives of the order of lO" a_e anticipated.

Following will be a demonstration of how reliability analysis methods, pre-

viously described, can be applied. First, it is necessary to identify sources

of uncertainty in the life prediction process.

Z_r_nJneK_

I. The use of the "duty cycle" to represent operational conditions.

2. The temperature of the hot gases.

3. The use of an equivalent temperature.

I. EFfect of strain _}ardening (or softening).

2. Accuracy in the cyclic stress streip curve _sed.



Figure _o2

Notch in Ri:,_of Turbine _isk WhereF_igue Crack
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Section ef Turoine Disk .... I
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j Y
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Fatigue Crack .,i----_.._----,-- _ : KtS
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3. The use of Neuber's rule to obtain tile no_;inal stress-r.otch _t_ain

curve.

4. Basic fatigue behavior as evidence by statistical scatter in strain-

life data.

5. Effect of surface finish, size effect, grain directions, etc. on the

strain-I ife curve.

6. The assumption to include (or not include) mean stress relaxation.

I. Accuracy of heat transfer analysis.

2. Stress analysis procedures (including thermal stresses) to determine

inelastic notch strains or elastic stress concentration factors.

3. Procedure used to establish the stress-strain history at the notch.

It will be assumed in this demonstration that the service nominal stress

varies from zero to peck S as shown in Figure 8.4. The equivalent stress at the

notch also varies from zero to a peak of qe = KtS where Kt is the theoretical

stress concentration factor. The equivalent and assumed constant temperature is

denoted as T.

Knowing the cyclic stress strain curve and applying Neuber's rule, the actual

stress strain (_ - _) curve at the notch can be established using standard methods

of local strain analysis (l, 2). As illustrated in Figure 8.5, the resulting _-_

history so established will define the strain range A_ and mean stress _m' the

information needed to compare with the strain-life relationship.

The strength of the material at a given cycle life N is defined by the general

_a = B Sf - _m ) b '
E (2N) + _f(2N) (8.3)
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Figure G.4

Nominal Stress History at _;otch

S

Je KtS

Stress at )Iotch

Figure 8.5

Stress-Strain History at Notch for a Given Temperature T

Stress, _ _- =
(KtS)2

E

cyclic _--_ curve

m

cyclic _-s curve x 2

(See Reference 3)

strain,

)leuber curve using Point A as origin
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S I _ 1

in which _a is strain amplitude and f, b _f and c are empirical constants. The

term in breckets is the familiar strain-life relationship (4,5). B is a random

variable which accounts for the scatter in fatigue data. Using this form, it is

assumed that the standard deviation of log (strain) given N is a constant (See

Section 5.3 for further detail).

The mean stress is _ and will be a function of both temperature T and the
m

equivalent stress at the notch _e = KtS

am : am(T,Kt,S ) (8.4)

Similarly the service strain amplitude _S will be a function of T, Kt and S.

_S = _/2 : _s(T,Kt,S) (8.5)

Consider operation to a given design life No .

"strength" is less than "stress". The event of failure is _a < _S or

BIIS;- _m(T'Kt'S)](2N°)b+L E _'f(2N°)Cl < _s(T'Kt'S)

Failure is said to occur if

(8.6)

In this example, it is assumed that both Kt and S are random variables re-

flecting uncertainty in analysis procedures. Both Kt and S will be the same for

each cycle, but there is uncertainty in the value. Temperature T may be the most

important variable but it is assumed to be constant just for the purpose of this

demonstration. No theoretical difficulties would be introduced by considering T

as a random variable.

Data for this problem is summarized in Table 8.3. The stress strain history

shown in Figure 8.6 obtained using Neuber's rule (see Reference 3) shows that

only elastic strains are present after the first cycle. Assuming no mean stress

relaxation, the stress strain history will cycle between points B and C as the
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Table 8.3

Data for Example Problem

Random Variable

Kt

S

J
e

B

Median

3

40 ksi (276 MPa)

120 ksi (827 MPa)

1

Coefficient of Variation

0.06

O.lO

0.117

0.18

Constants

rlo 5000 cycles

!

Sf 210 ksi (1448 MPa)

b -0.07

!

_f l.20

c -0.70

30,000 ksi (207 GPa)

From basic properties of lognormal variates

_e : KtS cov(_ e) :_/(I
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Figure _.6

Oetermination of Actual Stress-Strain History at _otcn
for ._ominal Stress, S = ,t2 ksi

o
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9(ksi)
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/ / \ Neuber Curve _or S = 42

// \_" c_s>2/

_.c under steady state conditions will

oscillate be_een B and C

,., I I

•002 .004 .006

Neuber hyperbola using B as origin
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nominal stress cycles bei_:;V_en 0 and S. From a graphical analysis, {See Figure 8.6

for various values of S) it is shown that

aS : _a/2 = KtS/2E = KtS/60,O00

: 52.0 ksi (359 MPa) for any S
m

(8.7)

Two methods of reliability analysis are used.

S and B have Iognormal distributions.

I.

In both it is assumed that Kt,

The Monte Carlo method;

Fatigue strength (strain at failure) is defined by Equation 8.3.

Noting that o
m

Table 8.3 that

is constant, it follows upon substitution of the values of

_a : B(0.00467)

Service strain is given by Equation 8.7. Failure occurs when

_a < _S

B(0.00467) _ KtS/60,O00

Isolating the random variables on the left hand side, the condition of

failure is

V - B/KtS < 3.6 x lO-3

Values of Kt, S and B are selected at random from lognormal distributions

having the parameters as given in Table 8.3. Then a sample of V is computed

and its empirical distribution function is established as shown in Figure

8.7. The figure shows the estimate of the safety index as 4.10 and the

probability of failure as pf = 2.09 x lO"5
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2. The qe-eraliz'ed safety index;

HASLwas used to compute the generalized safety index, 3 = 3.97. A log

transformation was made on all variables (See Section 7.4). The corresponding

pf = 3.51 x 10 -5. The output is shown in Table 8.4. This problem satisfies

the a_sumptions of the lognormal format (See Section 7.2) and therefore HASL

will provide the same result as the closed form expressions (Equations 7.20,

7.21, 7.13 and 7.14). Moreover, the Monte Carlo solution should agree. The

slight difference in results illustrates the error that is possible in extra-

polating the distribution function into the tail regions.

In both cases an index of structural performance was computed. The decision

with regard to safety must now be made by the designer.

As a footnote to this problem, consider the overall reliability of the disk.

The estimate of fatigue crack initiation at a given site was pf = 3.51 x lO-5.

But assume that there are n = 36 blades (i.e. n = 36 initiation sites). The key

question is what is the probability of crack initiation at any site?

This is a standard reliability problem, i.e. a series system where failure

of the disk is assumed to occur if failure occurs in any component. System

reliability is
r; n

: _ R. = _ (I - pi )n (8.8)RS
i=l 1 i:l

where R i = reliability of ith component and Pi = probability of failure of i

component. If Pi : constant, as it is in this example

th

RS : (l - p)n (8.9)

In this example RS : (I - 3.51 x 10-5) 36

: 0.99874

: 0,999
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Output of HASL (a)

Table 8.4

, A Program for Computing the
Safety Index for Example 2

Generalized

DESIGN VARIABLES

VA_IABL F TRANSFBRMAT [3N(b) _E AN/ME DIAN

8 i • LOOOOE_OI

KT 1 • 10000E4,0 I.

S 1 •_O003E_OZ

(c)
STD DEVICOV

.1BOOOE÷O0

.60000E-01

.IO000E÷O0

(c)

DESIGN POINT

VARIABLE REDUCEO VALUE BASIC VALUE

B XR (I)- -3, 33450 X(1)- • _513ZE÷00

KT XR(2)- 1,11q1_ X(2)- .3ZOBZE+01

S XR (3)- 1.86133 X(3I- ._815ZE+OZ

SAI::_TY INDEX, BETA - 3.97850

NOTES:

(a) HASL is a digital computer program developed by P. H. Wirsching, University

of Arizona, for computing the generalized safety index

(b) A l indicates a log transformation on each variable

(c) With a log transformation, the listed values are the Median and the Cov
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Thus we would predict that only about 1 in I000 of these disks would initiate

a fatigue crack at the notch.

8.4 Example 3: A Demonstration of the Efficiency of the Rackwitz Algorithm

The Rackwitz iteration method, as described in Section 7.5, was Dresented

as a method for efficiently computing estimates of probabilities of failure

for structural and mechanical components. The statistical distribution of

each random variable is specified. The limit state can take any form,

although risk estimates are expected to be slightly in error for non-linear

cases.

Following is an example which illustrates the efficiency of the Rackwitz

algorithm as compared to Monte Carlo. In this example, computer costs for

the Monte Carlo solution were six times greater.

Consider a fatigue problem in which the fatigue strength is defined by

the general strain-life relationship. Cyclic strain es at a notch has a

constant amplitude (not random), but there is uncertainty regarding its mag-

nitude. Mean stress _ also remains constant, but its value is uncertain.
m

The limit state is written as
I

_ Sf - )b ' c_s E °m(2N + _f(2N) (8.10)

The right hand side of the equation is fatigue strength. All terms have

been defined previously in Section 5.3. Failure occurs if the strain (left

hand side of Equation 8.10) exceeds the strength.

I

Values of the design factors are given in Table 8.5. Note that "_s' sf,
l

of, and om are considered to be random variables. They have different

distributions. In general it would be very difficult to compute the probao

bilitv of failure pf using the exact form of Equation 7.5. However two
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Table 8.5

Values of Design Factors for Fxample F'roblem

Design Life, N = lO¢ cycles

Modulus of Elasticity, E = 29,500 ksi

Fatigue Strength Exponent, b = -0.I08

Fatigue Ductility Exponent, c = -0.540

Random Design Factors Distribution Mean Standard Deviation

t

Fatigue Strength Coefficient, sf Lognormal

Fatigue Ductility Coefficient, _f Lognormal

Strain Amplitude, cs

Mean Stress, _m

148. .042

.491 .263

EVD .002 .0003

Weibull 20. 2.

Values of the mean and standard deviation stated for the lognormal are really

median and coefficient of variation respectively.
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approximate methods will be employed to estimate pf.

The Monte Carlo solution is presented on Figure 8.8. The safety index

determined graphically is approximately _ = 2.95. The corresponding pf =

0.0016.

Solutions using the Rackwitz algorithm using SUPER-HASL is summarized

in Table 8.5. Note that the results are essentially the same. In this

example, the approximate costs of running the Monte Carlo program and SUPER-

HASL were $A.OO and $0.70 respectively. Moreover, computer core reouirements

for SUPER-HASL are very modest. The program can be operated on a small

computer.

The quality and efficiency of the Rackwitz algorithm will be the subject

of a continuing study.

8.5 Summary Comments

The three examples provided in this chapter demonstrate application of

fatigue reliability methods. The approach chosen however depenGs upon the

statistical information available as well as the form of the limit state.

This report is considered to be preliminary. Additional examples are

being ronsidered and will be included in future reports.

8.6 References for Chapter 8

l. Fati§ue Under Complex Loading, SAE, No. AE-6, 1977.

2. Dowling, N.E., "Fatigue Life Predictions for Complex Load Versus Time Histories">

to appear in Decade of Progress in Pressure Vessels and Piping, ASME.

3. Socie, D.F. and Morrow, J.Dl, "Review of Contemporary Approaches to Fatigue

Damage Analysis", FCP Report No. 24, The University of Illinois, 1976.

4. Fatigue Design Handbook, SAE, No. AE-4, 1968.

5. Fuchs, H.O. and Stephens, R.I., _etal Fatigue in Engineering, Wiley, 1980.
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SUPER-HASL

I;IPUT

VARIABLE

ES(E s )

SF(S )

SM( )
m

EF(_)

EFFICIENT ITERATIVE SCHEME FOR COMPUTING PROBABILITIES OF FAILURE"

R. RACKWITZ, Technische Universitat, M_nchen, Germany (i976)

DESIGN VARIABLES

MEAN/MEDIAN STD DEV/COV

EVD .20000E-02 .30000E-03

LOG .14800E+03 .42000E-01

WEIBULL .20000E+02 .2OOOOE+Ol

LOG .49120E+00 .26300E+00

RESULTS

VARIABLE

ES

SF

SM

EF

DESIGN POINT

REDUCED VALUE

XR(I) : 2.47612

XR(2) = -.26978

XR(3) : .08325

XR(4) : -1.53516

BASIC VALUE

X(1) : .30365E-02

X(2) : .14633E+03

X(3) = .20402E+02

X(4) = .33024E+00

SAFETY INDEX, BETA = 2.g2711

PROBABILITY OF FAILURE = .001716

Computer program developed by Colleen F. Kelly, graduate student in Aero-

space and Mechanical Engineering at the University of Arizona
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APPENOIX 1 THE LOGNORMAL DISTRIBUTION AND PROPERTIES OF LOGNORMAL
VARIABLES

The lognormal format is proposed herein as a structural reliability

model. In this regard Appendix l provides, for reference purposes,

a detailed description of the lognormal distribution as well as certain

properties of lognormal variables that are used for the design equatiors.

Additional information on the lognormal is given by Benjamin and Cornell

and Ang and Tang*.

Given a random variable X. If Y : In X (or loglo X) has a normal

distribution, then X is said to have a "lognormal" distribution. The

mean and standard deviation of X and Y are (UX,oX) and (Uy,_y)

respectively. The probability density function (pdf) of X is

fx(X ) : 1 exp L- 2 (In x - Uy)
2_y

for

(AI.I)

_xCx)

Benjamin, J. R. and Cornell, C. A., Probabilit>,_ Statistics_ and Decision for
Civil Engineers, McGraw-Hill, 1970.

Ang, A. H. S. and Tang. W. H., Probabilitz Concepts in Engineering Planning
and Design, Wiley, 1975.
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The "statistical parameters" for the lognormal distribution are (Uy,_y).

The mean and standard deviation of the lognormal variables are (UX,_X) how-

ever the median of X, denoted as X and the coefficient of variation of X, CX'

are often used. Relationships between parameters and moments are

I. Base e

CX2),1 In (I + or _y = In X (AI.2)•jy : In '_X -

2 Cx2 (AI.3)_y : In (I + )

l Cy2] (AI.4)'_X : exp ['4y + _-

2 2
2 2_y _y _y

_x : e e (e - I) (AI.5)

/ _y2 1
Cx :v/e -

2. Base I0

Cx2).I log ! (I + .,r _y = l,,ulO x (AI.6)Uy : lOglo _X - 2 0

2 (AI.7)
:y = 0.434 loglo (l + CX2)

{Uy * _ IoglO (_y2/0-434) }

:X : I0 - (AI.8)

,_']o(_yZ/.434)
Cx : - l (AI.9)

in general, it is more meaningful to use the median (rather than

the mean) as a measure of central tendency for any random variable

having a la____r_variance. The median of X, denoted as ×, is _efined

by the relation Fx(X) : 0.50, where FX is the distributien f'Jncticn.
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Thus X defines the point below which _no,_J of the population is expected

to fa]!.

T)e expression ?o _"_y in _quations ,_i.2 and , 1.6 can be der_d from the

definition of the median

A,

0.50 : P(× < X) : P(In X < In X)

= P(Y < In ;(}

= Fy(In X) (Al .lO)

But, i, the median of Y, is

0.50 = Fy(Y) (Al.ll)

and it follows upon comparing Equations Al.lO and Al.ll that

Y : In X (Ai.1.2)

Recall that Y has a normal distribution and as a result of symmetry,

= i. Thus
the mean of Y equals the median, Uy

: In _( (Al.13)
Uy

The mean of X can be expressed as a function of the median. Equation

Al.13 can be written as,

: exp (Uy) (AI.]4)

Equations AI.2 can be solvea for _X'

_X = exp (_y) ,_ (AI.]5)
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Dividing Equation AI.15 by AI.14,

This relationship between X and _X proves to be useful because information

on _X and CX is often available. But when probability computations

are made, it is generally more convenient to use X.

How to make probability calculations.

P(X _x o) = P(In X _ In Xo)

: P(Y _ In xo) (Al.17)

But Y is normally distributed witn mean and standard deviation (by, _y).

Thus,
• °

Y -Uy In x° - Uy

p(x<_xo)- P( o--_-<_ _Y )

fln x - Uy 1
= ¢ I o

I _Y ]
(At.18)

where _ is the standard normal distribution function.

Replacing _y with X using Equation 4.13, an expression which is generally

more convenient to use follows,

In(xo/_)I
P(X _ x o) = ¢ _y I (AI.19)J

A similar expression for probabilities is valid w_en base lO logs are

used.

A-4



How to estimate parameters from data. Given a random sample, of size

n, of X,

: (×_,x 2.... , xn) (A].20)

the data is converted to a random sample of Y.

Y- : (YI'Y2""' Yn) (AI.21)

where Yi : In ×i"

Then the estimates of _y and Oy are,

n

_y _ Y --l- Z Y.
n i=l I

n

2 2 l r (y _ _)2
_y * Sy : n-_ L i

i:l

(Al .22)

(Al .23)

Property of lo_normal variates useful for design.

expression involving several random variables,

Axby c
V -

Ud

Consider an

(A_.24)

where X, Y, U are independent lognormal variates, b, c, and d are

c_nstants. It will be shown that V also has a lognormal distribution.

A form for probability calculations on V will be derived. Taking the

log of both sides,

log V : log A • b log X + c log Y - d log U (AI.25)

Maximum likelihood estimators
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Let,

V' = logV , X' : log X .... etc (A].26)

Then,

V' : log A + bX' + cY' - dU' rAl 27 _

_ote that X', Y' and U' are normal. It follows from the addition

property of normal variates that V' is also normal. Therefore V

has a lognormal distribution.

To make probability calculations, it is necessary to find

parameters (V, _V,). Taking the expected value of both sides of

Equatlon AI.27,

UV' : log A + bu x, + C_y, - du U, (AI .28)

But recall (Equation AI.13) that, _V' = log V, ... etc.

each 4, Equation AI.28 becomes

log V : log A + log Rb + log _c + log _-d

Substituting for

(Al .29)

Taking both sides to the "e" power,

- Axby c

0d
(AI.30)

Taking the variance of both sides of Equation AI.27,

2 b2 2 c2 2 • d2 2
_V' : _X' + ;Y' CU'

2 In (I + CX2 )But recall from Equation AI.3 that qX' : "'"

that

A-6
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etc. It follows I
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_V' 2 In (I + Cx2)b2(l + Cy2) c2 2) d2= (I _-C U (Al .32

Tilen to compute probabilities, consider Equation AI.19,

P(V L vo) :
qn (Vo/_)

(A1.33)

Example of the "Lo_normal Format"

Consider a design problem in which time failure of a com-

ponent, denoted as T, is a random variable• T is known to be a

function of random design factors _ and !. (A description of the

physical problem and what these terms mean is not important in

this example,)

T : _a/,b

where a and b are constants, it is assumed that the median and

COV of ? and 2. are known. The design life of the component is T
0

The event of failure of the component is (T < To), and the

probability of failure is,

pf = P(T 5 To)

At this point, if we can assume that _ and .L nave lognormal distributions,

then T has a lognormal distribution, and from Eq Al.19, (note the reversal

of T and T)
0

Pf:_
In (_/To)_

I
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where T' = In T.

Then,

Define the safety index 3 as,

= In (T/To)/:_ T,

pf : ,)(-#)

plays the same role in probabilistic design as the factor of safety does

in conventional design. To compute _, the parameters must be evaluated

using a form of Equations Al.30 and AI.32,

_T' = qln T 2)a 2 A2)b2 ]I/2: [ In{(l + C_ (I + C }

A-8




